Vai al contenuto principale della pagina

Remote Sensing in Agriculture: State-of-the-Art



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Borgogno-Mondino Enrico Visualizza persona
Titolo: Remote Sensing in Agriculture: State-of-the-Art Visualizza cluster
Pubblicazione: Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica: 1 electronic resource (220 p.)
Soggetto topico: Technology: general issues
History of engineering & technology
Environmental science, engineering & technology
Soggetto non controllato: feature selection
spectral angle mapper
support vector machine
support vector regression
hyperspectral imaging
UAV
cross-scale
yellow rust
spatial resolution
winter wheat
MODIS
northern Mongolia
remote sensing indices
spring wheat
yield estimation
UAV-based LiDAR
biomass
crop height
field phenotyping
oasis crop type mapping
Sentinel-1 and 2 integration
statistically homogeneous pixels (SHPs)
red-edge spectral bands and indices
recursive feature increment (RFI)
random forest (RF)
unmanned aerial vehicles (UAVs)
remote sensing (RS)
thermal UAV RS
thermal infrared (TIR)
precision agriculture (PA)
crop water stress monitoring
plant disease detection
vegetation status monitoring
Landsat
data blending
crop yield prediction
gap-filling
volumetric soil moisture
synthetic aperture radar (SAR)
Sentinel-1
soil moisture semi-empirical model
soil moisture Karnataka India
reflectance
digital number (DN)
vegetation index (VI)
Parrot Sequoia (Sequoia)
DJI Phantom 4 Multispectral (P4M)
Synthetic Aperture Radar
SAR
lodging
Hidden Markov Random Field
HMRF
CDL
corn
soybean
crop Monitoring
crop management
apple orchard damage
polarimetric decomposition
entropy
anisotropy
alpha angle
storm damage mapping
economic loss
insurance support
Persona (resp. second.): TarantinoEufemia
CapolupoAlessandra
Borgogno-MondinoEnrico
Sommario/riassunto: The Special Issue on “Remote Sensing in Agriculture: State-of-the-Art” gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly each contribution published in such Special Issue.
Altri titoli varianti: Remote Sensing in Agriculture
Titolo autorizzato: Remote Sensing in Agriculture: State-of-the-Art  Visualizza cluster
ISBN: 3-0365-5484-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910637779903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui