Applied Mathematics and Fractional Calculus
| Applied Mathematics and Fractional Calculus |
| Autore | González Francisco Martínez |
| Descrizione fisica | 1 online resource (438 p.) |
| Soggetto topico |
Mathematics and Science
Research and information: general |
| Soggetto non controllato |
Aboodh transform iterative method
Adomian decomposition method anisotropic Lorentz space approximate endpoint criterion approximate solutions Atangana-Baleanu fractional derivative Babenko's approach Banach fixed point theorem Bessel polynomials bilateral tempered fractional derivative boundary value problem Caputo derivative Caputo fractional derivative caputo operator Caputo q-derivative Caputo-Fabrizio and Atangana-Baleanu operators collocation method collocation points concave operator condensing function conservation laws convergence analysis convex functions degenerate evolution equation discrete fractional calculus eigenfunctions and eigenvalues elastic beam problem equations Euler-Lagrange equation existence existence and uniqueness existence of solutions first fundamental theorem of fractional calculus fixed point fixed point theorem fractional burgers equation fractional calculus fractional derivative fractional derivatives fractional differential equation fractional differential equations fractional Dzhrbashyan-Nersesyan derivative fractional Fornberg-Whitham equation (FWE) fractional Kadomtsev-Petviashvili system fractional KdV equation fractional Prabhakar derivatives fractional Sturm-Liouville problems Fredholm-Volterra integral Equations gamma function Gelfand problem general fractional derivative of arbitrary order general fractional integral of arbitrary order Green's function hermite cubic spline HHF type inequality initial boundary value problem initial value problem integral transform lie group analysis MHD equations Mittag-Leffler function nabla fractional difference natural boundary conditions natural transform new iterative transform method nonlocal conditions one-sided tempered fractional derivative optimal controls order cone partial differential equation partial Riemann-Liouville fractional integral power series solutions quantum integro-difference BVP regularity criteria Riemann-Liouville derivative Riemann-Liouville fractional difference operator Riemann-Liouville q-integral second fundamental theorem of fractional calculus semigroup theory separated boundary conditions Shehu decomposition method Shehu transform singular sum fractional q-differential Sonine kernel symmetry tempered fractional derivative tempered riesz potential time delay time-fractional Kaup-Kupershmidt equation Ulam stability weak solution weighted fractional operators ρ-Laplace decomposition method ρ-Laplace variational iteration method φ-Hilfer fractional system with impulses |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910595073903321 |
González Francisco Martínez
|
||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time / / Philip Isett
| Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time / / Philip Isett |
| Autore | Isett Philip |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2017] |
| Descrizione fisica | 1 online resource (214 pages) |
| Disciplina | 532/.05 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico | Fluid dynamics - Mathematics |
| Soggetto non controllato |
Beltrami flows
Einstein summation convention Euler equations Euler flow Euler-Reynolds equations Euler-Reynolds system Galilean invariance Galilean transformation HighЈigh Interference term HighЈigh term HighЌow Interaction term Hlder norm Hlder regularity Lars Onsager Main Lemma Main Theorem Mollification term Newton's law Noether's theorem Onsager's conjecture Reynolds stres Reynolds stress Stress equation Stress term Transport equation Transport term Transport-Elliptic equation abstract index notation algebra amplitude coarse scale flow coarse scale velocity coefficient commutator estimate commutator term commutator conservation of momentum continuous solution contravariant tensor convergence convex integration correction term correction covariant tensor dimensional analysis divergence equation divergence free vector field divergence operator energy approximation energy function energy increment energy regularity energy variation energy error term error finite time interval first material derivative fluid dynamics frequencies frequency energy levels h-principle integral lifespan parameter lower indices material derivative mollification mollifier moment vanishing condition momentum multi-index non-negative function nonzero solution optimal regularity oscillatory factor oscillatory term parameters parametrix expansion parametrix phase direction phase function phase gradient pressure correction pressure regularity relative acceleration relative velocity scaling symmetry second material derivative smooth function smooth stress tensor smooth vector field spatial derivative stress tensor theorem time cutoff function time derivative transport derivative transport equations transport estimate transport upper indices vector amplitude velocity correction velocity field velocity weak limit weak solution |
| ISBN | 1-4008-8542-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Preface -- Part I. Introduction -- Part II. General Considerations of the Scheme -- Part III. Basic Construction of the Correction -- Part IV. Obtaining Solutions from the Construction -- Part V. Construction of Regular Weak Solutions: Preliminaries -- Part VI Construction of Regular Weak Solutions: Estimating the Correction -- Part VII. Construction of Regular Weak Solutions: Estimating the New Stress -- Acknowledgments -- Appendices -- References -- Index |
| Record Nr. | UNINA-9910163942603321 |
Isett Philip
|
||
| Princeton, NJ : , : Princeton University Press, , [2017] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||