top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences
Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences
Autore Vohland Michael
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (218 p.)
Soggetto topico Research and information: general
Soggetto non controllato antarctica
atmospheric correction
bio-optical algorithm
biomass
chlorophyll a
chlorophyll-a
close-range hyperspectral imaging
colored dissolved organic matter
convolutional neural network
electromagnetic induction
field hyperspectral measurement
fine-scale
georectification
hyperspectral
Hyperspectral image
hyperspectral imager
hyperspectral imaging
ice algae
in situ measurements
instrument development
long-distance
long-range
Maarmorilik
machine learning
mangrove species classification
mineral mapping
minimum wavelength mapping
mosaicking
multiple classifier fusion
n/a
photogrammetry
phycocyanin
push-broom
radiometric correction
random forest
random forest regression
receiver
Riotinto
rotation forest
sea ice
snapshot hyperspectral imaging
soil
soil salinity
spectroradiometry
structure from motion
Structure from Motion (SfM)
telescope
topographic correction
tree species
UAV
under-ice
underwater
unmanned aerial vehicle
vertical distribution
water column
waveband selection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557368003321
Vohland Michael  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hyperspectral Remote Sensing of Agriculture and Vegetation
Hyperspectral Remote Sensing of Agriculture and Vegetation
Autore Pascucci Simone
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (266 p.)
Soggetto topico Environmental economics
Research & information: general
Soggetto non controllato abaxial
adaxial
analytical methods
AOTF
artificial intelligence
biodiversity
BRDF
canopy spectra
chlorophyll content
classification
classification of agricultural features
continuous wavelet transform (CWT)
correlation coefficient
crop properties
discrimination
DLARI
Eragrostis tef
Ethiopia
expansive species
feature selection
field spectroscopy
future hyperspectral missions
grapevine
heavy metals
high-resolution spectroscopy for agricultural soils and vegetation
hyperspectral
hyperspectral data as input for modelling soil, crop, and vegetation
hyperspectral databases for agricultural soils and vegetation
hyperspectral imaging
hyperspectral imaging for vegetation
hyperspectral LiDAR
hyperspectral remote sensing
hyperspectral remote sensing for soil and crops in agriculture
invasive species
leaf chlorophyll content
macronutrient
MDATT
micronutrient
MLR
multi-angle observation
Natura 2000
new hyperspectral technologies
object-oriented segmentation
partial least square regression (PLSR)
partial least squares
peanut
plant
plant traits
platforms and sensors
PLS
precision agriculture
product validation
proximal sensing data
proximal sensor
random forest
Red Edge
remote sensing
replicability
reproducibility
soil characteristics
spectra
spectral reflectance
spectroscopy
support vector machine
SVM
vegetation
vegetation classification
vegetation parameters
waveband selection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557691803321
Pascucci Simone  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui