Advanced Sensing and Image Processing Techniques for Healthcare Applications |
Autore | Abolghasemi Vahid |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (258 p.) |
Soggetto topico |
Information technology industries
Computer science |
Soggetto non controllato |
tremor
essential tremor ataxia finger–nose–finger test H&E decellularization liver tissue engineering semantic segmentation convolutional neural networks segmentation lung CT image U-Net ResNet-34 BConvLSTM magnetic resonance images brain tissue segmentation multi-scale feature learning multi-branch pooling multi-branch dense prediction multi-branch output delay-and-sum (DAS) delay-multiply-and-sum (DMAS) signal coherence power doppler detection plane-wave (PW) imaging complementary subset transmit (CST) coherent plane-wave compounding (CPWC) robotic cell manipulation mechanical properties elasticity measurement viscosity measurement cell mechanics hemoglobin sensor bladder irrigation monitor absorption near infrared artificial intelligence bubble detection exercise EEG EMG ECG brain activity age exercise habit tinnitus auditory discrimination therapy EEG evaluation event-related synchronization event-related desynchronization convolutional neural network image registration cycle constraint multimodal features self-supervision rigid alignment magnetic resonance fingerprinting echo-planar imaging T1 and T2* relaxation times denoising convolutional neural network self-attention feature pyramid network image processing object detection blind braille system 3D body shapes body weights and measures postpartum period pregnancy period anthropometry machine learning vital sign invasive blood pressure feature engineering hypotension arterial hypotension |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910566486403321 |
Abolghasemi Vahid | ||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Intelligent Sensors for Human Motion Analysis |
Autore | Krzeszowski Tomasz |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (382 p.) |
Soggetto topico |
Technology: general issues
History of engineering & technology |
Soggetto non controllato |
gait recognition
biometrics regularized discriminant analysis particle swarm optimization grey wolf optimization whale optimization algorithm FMCW vital sign XGBoost MFCC COVID-19 3D human pose estimation deep learning generalization optical sensing principle modular sensing unit plantar pressure measurement gait parameters 3D human mesh reconstruction deep neural network motion capture neural networks reconstruction gap filling FFNN LSTM BILSTM GRU pose estimation movement tracking computer vision artificial intelligence markerless motion capture assessment kinematics development machine learning human action recognition features fusion features selection recognition fall risk detection balance Berg Balance Scale human tracking elderly telemedicine diagnosis precedence indicator knowledge measure fuzzy inference rule induction posture detection aggregation function markerless human motion analysis gait analysis data augmentation skeletal data time series classification EMG pattern recognition robot cyber-physical systems RGB-D sensors human motion modelling F-Formation Kinect v2 Azure Kinect Zed 2i socially occupied space facial expression recognition facial landmarks action units convolutional neural networks graph convolutional networks artifact classification artifact detection anomaly detection 3D multi-person pose estimation absolute poses camera-centric coordinates deep-learning |
ISBN | 3-0365-5074-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910619469003321 |
Krzeszowski Tomasz | ||
MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|