top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Sensing and Image Processing Techniques for Healthcare Applications
Advanced Sensing and Image Processing Techniques for Healthcare Applications
Autore Abolghasemi Vahid
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (258 p.)
Soggetto topico Information technology industries
Computer science
Soggetto non controllato tremor
essential tremor
ataxia
finger–nose–finger test
H&E
decellularization
liver
tissue engineering
semantic segmentation
convolutional neural networks
segmentation
lung
CT image
U-Net
ResNet-34
BConvLSTM
magnetic resonance images
brain tissue segmentation
multi-scale feature learning
multi-branch pooling
multi-branch dense prediction
multi-branch output
delay-and-sum (DAS)
delay-multiply-and-sum (DMAS)
signal coherence
power doppler detection
plane-wave (PW) imaging
complementary subset transmit (CST)
coherent plane-wave compounding (CPWC)
robotic cell manipulation
mechanical properties
elasticity measurement
viscosity measurement
cell mechanics
hemoglobin sensor
bladder irrigation monitor
absorption near infrared
artificial intelligence
bubble detection
exercise
EEG
EMG
ECG
brain activity
age
exercise habit
tinnitus
auditory discrimination therapy
EEG evaluation
event-related synchronization
event-related desynchronization
convolutional neural network
image registration
cycle constraint
multimodal features
self-supervision
rigid alignment
magnetic resonance fingerprinting
echo-planar imaging
T1 and T2* relaxation times
denoising convolutional neural network
self-attention
feature pyramid network
image processing
object detection
blind
braille system
3D body shapes
body weights and measures
postpartum period
pregnancy period
anthropometry
machine learning
vital sign
invasive blood pressure
feature engineering
hypotension
arterial hypotension
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566486403321
Abolghasemi Vahid  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent Sensors for Human Motion Analysis
Intelligent Sensors for Human Motion Analysis
Autore Krzeszowski Tomasz
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (382 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato gait recognition
biometrics
regularized discriminant analysis
particle swarm optimization
grey wolf optimization
whale optimization algorithm
FMCW
vital sign
XGBoost
MFCC
COVID-19
3D human pose estimation
deep learning
generalization
optical sensing principle
modular sensing unit
plantar pressure measurement
gait parameters
3D human mesh reconstruction
deep neural network
motion capture
neural networks
reconstruction
gap filling
FFNN
LSTM
BILSTM
GRU
pose estimation
movement tracking
computer vision
artificial intelligence
markerless motion capture
assessment
kinematics
development
machine learning
human action recognition
features fusion
features selection
recognition
fall risk detection
balance
Berg Balance Scale
human tracking
elderly
telemedicine
diagnosis
precedence indicator
knowledge measure
fuzzy inference
rule induction
posture detection
aggregation function
markerless
human motion analysis
gait analysis
data augmentation
skeletal data
time series classification
EMG
pattern recognition
robot
cyber-physical systems
RGB-D sensors
human motion modelling
F-Formation
Kinect v2
Azure Kinect
Zed 2i
socially occupied space
facial expression recognition
facial landmarks
action units
convolutional neural networks
graph convolutional networks
artifact classification
artifact detection
anomaly detection
3D multi-person pose estimation
absolute poses
camera-centric coordinates
deep-learning
ISBN 3-0365-5074-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619469003321
Krzeszowski Tomasz  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui