top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Assessing Complexity in Physiological Systems through Biomedical Signals Analysis
Assessing Complexity in Physiological Systems through Biomedical Signals Analysis
Autore Castiglioni Paolo
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (296 p.)
Soggetto topico Research & information: general
Mathematics & science
Soggetto non controllato autonomic nervous function
heart rate variability (HRV)
baroreflex sensitivity (BRS)
photo-plethysmo-graphy (PPG)
digital volume pulse (DVP)
percussion entropy index (PEI)
heart rate variability
posture
entropy
complexity
cognitive task
sample entropy
brain functional networks
dynamic functional connectivity
static functional connectivity
K-means clustering algorithm
fragmentation
aging in human population
factor analysis
support vector machines classification
Sampen
cross-entropy
autonomic nervous system
heart rate
blood pressure
hypobaric hypoxia
rehabilitation medicine
labor
fetal heart rate
data compression
complexity analysis
nonlinear analysis
preterm
Alzheimer’s disease
brain signals
single-channel analysis
biomarker
refined composite multiscale entropy
central autonomic network
interconnectivity
ECG
ectopic beat
baroreflex
self-organized criticality
vasovagal syncope
Zipf’s law
multifractality
multiscale complexity
detrended fluctuation analysis
self-similarity
sEMG
approximate entropy
fuzzy entropy
fractal dimension
recurrence quantification analysis
correlation dimension
largest Lyapunov exponent
time series analysis
relative consistency
event-related de/synchronization
motor imagery
vector quantization
information dynamics
partial information decomposition
conditional transfer entropy
network physiology
multivariate time series analysis
State–space models
vector autoregressive model
penalized regression techniques
linear prediction
fNIRS
brain dynamics
mental arithmetics
multiscale
cardiovascular system
brain
information flow
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557601803321
Castiglioni Paolo  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Information Theory and Machine Learning
Information Theory and Machine Learning
Autore Zheng Lizhong
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (254 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato supervised classification
independent and non-identically distributed features
analytical error probability
empirical risk
generalization error
K-means clustering
model compression
population risk
rate distortion theory
vector quantization
overfitting
information criteria
entropy
model-based clustering
merging mixture components
component overlap
interpretability
time series prediction
finite state machines
hidden Markov models
recurrent neural networks
reservoir computers
long short-term memory
deep neural network
information theory
local information geometry
feature extraction
spiking neural network
meta-learning
information theoretic learning
minimum error entropy
artificial general intelligence
closed-loop transcription
linear discriminative representation
rate reduction
minimax game
fairness
HGR maximal correlation
independence criterion
separation criterion
pattern dictionary
atypicality
Lempel–Ziv algorithm
lossless compression
anomaly detection
information-theoretic bounds
distribution and federated learning
ISBN 3-0365-5308-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619463403321
Zheng Lizhong  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui