top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Assessing Complexity in Physiological Systems through Biomedical Signals Analysis
Assessing Complexity in Physiological Systems through Biomedical Signals Analysis
Autore Castiglioni Paolo
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (296 p.)
Soggetto topico Mathematics & science
Research & information: general
Soggetto non controllato aging in human population
Alzheimer's disease
approximate entropy
autonomic nervous function
autonomic nervous system
baroreflex
baroreflex sensitivity (BRS)
biomarker
blood pressure
brain
brain dynamics
brain functional networks
brain signals
cardiovascular system
central autonomic network
cognitive task
complexity
complexity analysis
conditional transfer entropy
correlation dimension
cross-entropy
data compression
detrended fluctuation analysis
digital volume pulse (DVP)
dynamic functional connectivity
ECG
ectopic beat
entropy
event-related de/synchronization
factor analysis
fetal heart rate
fNIRS
fractal dimension
fragmentation
fuzzy entropy
heart rate
heart rate variability
heart rate variability (HRV)
hypobaric hypoxia
information dynamics
information flow
interconnectivity
K-means clustering algorithm
labor
largest Lyapunov exponent
linear prediction
mental arithmetics
motor imagery
multifractality
multiscale
multiscale complexity
multivariate time series analysis
network physiology
nonlinear analysis
partial information decomposition
penalized regression techniques
percussion entropy index (PEI)
photo-plethysmo-graphy (PPG)
posture
preterm
recurrence quantification analysis
refined composite multiscale entropy
rehabilitation medicine
relative consistency
Sampen
sample entropy
self-organized criticality
self-similarity
sEMG
single-channel analysis
State-space models
static functional connectivity
support vector machines classification
time series analysis
vasovagal syncope
vector autoregressive model
vector quantization
Zipf's law
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557601803321
Castiglioni Paolo  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Information Theory and Machine Learning
Information Theory and Machine Learning
Autore Zheng Lizhong
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (254 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato supervised classification
independent and non-identically distributed features
analytical error probability
empirical risk
generalization error
K-means clustering
model compression
population risk
rate distortion theory
vector quantization
overfitting
information criteria
entropy
model-based clustering
merging mixture components
component overlap
interpretability
time series prediction
finite state machines
hidden Markov models
recurrent neural networks
reservoir computers
long short-term memory
deep neural network
information theory
local information geometry
feature extraction
spiking neural network
meta-learning
information theoretic learning
minimum error entropy
artificial general intelligence
closed-loop transcription
linear discriminative representation
rate reduction
minimax game
fairness
HGR maximal correlation
independence criterion
separation criterion
pattern dictionary
atypicality
Lempel–Ziv algorithm
lossless compression
anomaly detection
information-theoretic bounds
distribution and federated learning
ISBN 3-0365-5308-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619463403321
Zheng Lizhong  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui