top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Buildings of Tomorrow: Goals and Challenges for Design and Operation of High-Performance Buildings
Buildings of Tomorrow: Goals and Challenges for Design and Operation of High-Performance Buildings
Autore Košir Mitja
Pubbl/distr/stampa Basel, : MDPI Books, 2022
Descrizione fisica 1 electronic resource (230 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato climate change
bioclimatic design
passive design
energy efficiency
overheating
building resilience
robustness
shape factor
building
thermal envelope
energy demand
CO2 emissions
white roofs
cool roofs
reflective material
cost-benefit
energy savings
urban heat island
thermal comfort
indoor environmental quality
educational buildings
energy consumptions
local discomfort
building energy retrofitting
phase change materials
aerogel render
heat stress risk
emission
lifecycle cost
peak cooling load
residential building
building envelope
multi-objective genetic algorithm
TRNSYS
climate zone
multi-criteria decision making
CRITIC
TOPSIS
capture devices
variables
field surveys
thermal perceptions
adaptive actions
hostel dormitories
composite climate of India
reflective materials
mitigation
outdoor comfort
visual comfort
heat stress
optimization
skyscrapers
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Buildings of Tomorrow
Record Nr. UNINA-9910595075003321
Košir Mitja  
Basel, : MDPI Books, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Making it count : the improvement of social research and theory / / Stanley Lieberson
Making it count : the improvement of social research and theory / / Stanley Lieberson
Autore Lieberson Stanley <1933-2018.>
Pubbl/distr/stampa Berkeley, : University of California Press, c1985
Descrizione fisica 1 online resource (xiv, 257 pages)
Disciplina 301/.072
Soggetto topico Sociology - Research - Methodology
Social sciences - Research - Methodology
Soggetto non controllato boyles law
causality
causation
conducting research
data collection
empiricism
evaluating data
logic
nonexperimental data
nonfiction
political science
quasi experiment
research assumptions
research methods
research questions
research
sampling problems
science
scientific enterprise
scientific method
scientific theory
selectivity
social research
social science
sociological methodology
sociology
variables
ISBN 1-282-35531-7
9786612355318
0-520-90842-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto pt. 1. Current practices -- pt. 2. Toward a solution.
Record Nr. UNINA-9910778081203321
Lieberson Stanley <1933-2018.>  
Berkeley, : University of California Press, c1985
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Small sample size solutions : a guide for applied researchers and practitioners / / edited by Rens van de Schoot and Milica Miočević
Small sample size solutions : a guide for applied researchers and practitioners / / edited by Rens van de Schoot and Milica Miočević
Autore van de Schoot Rens
Pubbl/distr/stampa Taylor & Francis, 2020
Descrizione fisica 1 online resource (xiv, 269 pages) : digital, PDF file(s)
Disciplina 001.42
Collana European Association of Methodology series
Soggetto topico Research - Methodology
Data sets
Soggetto non controllato statistical methods
researchers
statistical model
research
small sample
estimation
population
variables
observations
social sciences
behavioral sciences
medical sciences
epidemiology
psychology
marketing
economics
analysis
ISBN 1-000-76101-0
1-000-76108-8
0-367-22222-1
0-429-27387-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction (Van de Schootand Miočević) List of Symbols Part I: Bayesian solutions 1. Introduction to Bayesian statistics(Miočević, Levy,and van de Schoot) 2.The role of exchangeability in sequential updating of findings from small studies and the challenges of identifying exchangeable data sets (Miočević, Levy,and Savord) 3. A tutorial on using the WAMBS checklist to avoid the misuse of Bayesian statistics(van de Schoot, Veen, Smeets, Winter,and Depaoli) 4. The importance of collaboration in Bayesian analyses with small samples (Veenand Egberts) 5. A tutorial on Bayesian penalized regression with shrinkage priors for small sample sizes (van Erp) PartII: n=1 6. One by one: the designand analysis of replicated randomized single-case experiments(Onghena) 7. Single-case experimental designs in clinical intervention research (Maricand van der Werff) 8. How to improve the estimation of a specific examinee's (n=1)math ability when test data are limited(Lekand Arts) 9. Combining evidence over multiple individual analyses(Klaassen) 10. Going multivariate in clinical trial studies: a Bayesian framework for multiple binary outcomes(Kavelaars) PartIII: Complex hypotheses and models 11. An introduction to restriktor: evaluating informative hypotheses for linear models (VanbrabantandRosseel) 12. Testing replication with small samples: applications to ANOVA(Zondervan-Zwijnenburgand Rijshouwer) 13. Small sample meta-analyses: exploring heterogeneity using MetaForest (van Lissa) 14. Item parcels as indicators: why, when, and how to use them in small sample research(Rioux, Stickley, Odejimi,and Little) 15. Small samples in multilevel modeling(Hoxand McNeish) 16. Small sample solutions for structural equation modeling(Rosseel) 17. SEM with small samples: two-step modeling and factor score regression versus Bayesian estimation with informative priors (Smidand Rosseel) 18. Important yet unheeded: some small sample issues that are often overlooked(Hox) Index
Record Nr. UNINA-9910377813603321
van de Schoot Rens  
Taylor & Francis, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spatiotemporal data analysis / / Gidon Eshel
Spatiotemporal data analysis / / Gidon Eshel
Autore Eshel Gidon <1958->
Edizione [Course Book]
Pubbl/distr/stampa Princeton : , : Princeton University Press, , [2012]
Descrizione fisica 1 online resource (336 p.)
Disciplina 519.5/36
Soggetto topico Spatial analysis (Statistics)
Soggetto genere / forma Electronic books.
Soggetto non controllato EOF analysis
EOF
GramГchmidt orthogonalization
SVD analysis
SVD
astrophysics
autocorrelation functions
autocovariance
autoregressive model
climate science
column space
covariability matrix
data analysis
data matrices
degrees of freedom
deterministic science
ecology
eigen-decomposition
eigen-techniques
eigenanalysis
eigenvalues
empirical orthogonal functions
empirical science
empiricism
exercises
forward problem
geophysics
inverse problem
linear algebra
linear regression
matrices
matrix structure
matrix
medicine
multidimensional data sets
multidimensional data
nondeterministic phenomena
null space
phenomena
probability distribution
row space
singular value decomposition
spatiotemporal data
spectral representation
square matrices
statistics
stochastic processes
subjective decisions
theoretical science
time series
timescale
tornado
variables
vectors
ISBN 1-4008-4063-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface -- Acknowledgments -- Part 1. Foundations -- One. Introduction and Motivation -- Two. Notation and Basic Operations -- Three. Matrix Properties, Fundamental Spaces, Orthogonality -- Four. Introduction to Eigenanalysis -- Five. The Algebraic Operation of SVD -- Part 2. Methods of Data Analysis -- Six. The Gray World of Practical Data Analysis: An Introduction to Part 2 -- Seven. Statistics in Deterministic Sciences: An Introduction -- Eight. Autocorrelation -- Nine. Regression and Least Squares -- Ten. The Fundamental Theorem of Linear Algebra -- Eleven. Empirical Orthogonal Functions -- Twelve. The SVD Analysis of Two Fields -- Thirteen. Suggested Homework -- Index
Record Nr. UNINA-9910461571103321
Eshel Gidon <1958->  
Princeton : , : Princeton University Press, , [2012]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spatiotemporal data analysis / / Gidon Eshel
Spatiotemporal data analysis / / Gidon Eshel
Autore Eshel Gidon <1958->
Edizione [Course Book]
Pubbl/distr/stampa Princeton : , : Princeton University Press, , [2012]
Descrizione fisica 1 online resource (336 p.)
Disciplina 519.5/36
Soggetto topico Spatial analysis (Statistics)
Soggetto non controllato EOF analysis
EOF
GramГchmidt orthogonalization
SVD analysis
SVD
astrophysics
autocorrelation functions
autocovariance
autoregressive model
climate science
column space
covariability matrix
data analysis
data matrices
degrees of freedom
deterministic science
ecology
eigen-decomposition
eigen-techniques
eigenanalysis
eigenvalues
empirical orthogonal functions
empirical science
empiricism
exercises
forward problem
geophysics
inverse problem
linear algebra
linear regression
matrices
matrix structure
matrix
medicine
multidimensional data sets
multidimensional data
nondeterministic phenomena
null space
phenomena
probability distribution
row space
singular value decomposition
spatiotemporal data
spectral representation
square matrices
statistics
stochastic processes
subjective decisions
theoretical science
time series
timescale
tornado
variables
vectors
ISBN 1-4008-4063-5
Classificazione SCI019000MAT002050
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface -- Acknowledgments -- Part 1. Foundations -- One. Introduction and Motivation -- Two. Notation and Basic Operations -- Three. Matrix Properties, Fundamental Spaces, Orthogonality -- Four. Introduction to Eigenanalysis -- Five. The Algebraic Operation of SVD -- Part 2. Methods of Data Analysis -- Six. The Gray World of Practical Data Analysis: An Introduction to Part 2 -- Seven. Statistics in Deterministic Sciences: An Introduction -- Eight. Autocorrelation -- Nine. Regression and Least Squares -- Ten. The Fundamental Theorem of Linear Algebra -- Eleven. Empirical Orthogonal Functions -- Twelve. The SVD Analysis of Two Fields -- Thirteen. Suggested Homework -- Index
Record Nr. UNINA-9910789871903321
Eshel Gidon <1958->  
Princeton : , : Princeton University Press, , [2012]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spatiotemporal data analysis / / Gidon Eshel
Spatiotemporal data analysis / / Gidon Eshel
Autore Eshel Gidon <1958->
Edizione [Course Book]
Pubbl/distr/stampa Princeton : , : Princeton University Press, , [2012]
Descrizione fisica 1 online resource (336 p.)
Disciplina 519.5/36
Soggetto topico Spatial analysis (Statistics)
Soggetto non controllato EOF analysis
EOF
GramГchmidt orthogonalization
SVD analysis
SVD
astrophysics
autocorrelation functions
autocovariance
autoregressive model
climate science
column space
covariability matrix
data analysis
data matrices
degrees of freedom
deterministic science
ecology
eigen-decomposition
eigen-techniques
eigenanalysis
eigenvalues
empirical orthogonal functions
empirical science
empiricism
exercises
forward problem
geophysics
inverse problem
linear algebra
linear regression
matrices
matrix structure
matrix
medicine
multidimensional data sets
multidimensional data
nondeterministic phenomena
null space
phenomena
probability distribution
row space
singular value decomposition
spatiotemporal data
spectral representation
square matrices
statistics
stochastic processes
subjective decisions
theoretical science
time series
timescale
tornado
variables
vectors
ISBN 1-4008-4063-5
Classificazione SCI019000MAT002050
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface -- Acknowledgments -- Part 1. Foundations -- One. Introduction and Motivation -- Two. Notation and Basic Operations -- Three. Matrix Properties, Fundamental Spaces, Orthogonality -- Four. Introduction to Eigenanalysis -- Five. The Algebraic Operation of SVD -- Part 2. Methods of Data Analysis -- Six. The Gray World of Practical Data Analysis: An Introduction to Part 2 -- Seven. Statistics in Deterministic Sciences: An Introduction -- Eight. Autocorrelation -- Nine. Regression and Least Squares -- Ten. The Fundamental Theorem of Linear Algebra -- Eleven. Empirical Orthogonal Functions -- Twelve. The SVD Analysis of Two Fields -- Thirteen. Suggested Homework -- Index
Record Nr. UNINA-9910823944403321
Eshel Gidon <1958->  
Princeton : , : Princeton University Press, , [2012]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui