top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Application of Bioinformatics in Cancers
Application of Bioinformatics in Cancers
Autore Brenner J. Chad
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (418 p.)
Soggetto topico Biotechnology
Soggetto non controllato activation induced deaminase
AID/APOBEC
alternative splicing
anti-cancer
artificial intelligence
bioinformatics
Bioinformatics tool
biomarker discovery
biomarker signature
biomarkers
biostatistics
brain
brain metastases
breast cancer
breast cancer detection
breast cancer prognosis
Bufadienolide-like chemicals
cancer
cancer biomarker
cancer biomarkers
cancer CRISPR
cancer modeling
cancer prognosis
cancer treatment
cancer-related pathways
cell-free DNA
chemotherapy
circulating tumor DNA (ctDNA)
classification
clinical/environmental factors
colorectal cancer
comorbidity score
Computational Immunology
concatenated deep feature
copy number aberration
copy number variation
curation
curative surgery
datasets
decision support systems
deep learning
denoising autoencoders
differential gene expression analysis
diseases genes
DNA
DNA sequence profile
drug resistance
epigenetics
erlotinib
estrogen
extreme learning
false discovery rate
feature extraction and interpretation
feature selection
firehose
functional analysis
gefitinib
gene expression analysis
gene inactivation biomarkers
gene loss biomarkers
gene signature extraction
genomic instability
GEO DataSets
head and neck cancer
health strengthening herb
hierarchical clustering analysis
high-throughput analysis
histopathological imaging
histopathological imaging features
HNSCC
hormone sensitive cancers
HP
hTERT
imaging
independent prognostic power
interaction
intratumor heterogeneity
knockoffs
KRAS mutation
locoregionally advanced
machine learning
meta-analysis
methylation
microarray
miRNA
miRNAs
mitochondrial metabolism
mixture of normal distributions
molecular mechanism
molecular subtypes
Monte Carlo
mortality
multiple-biomarkers
mutable motif
mutation
Neoantigen Prediction
network analysis
Network Analysis
network pharmacology
network target
neurological disorders
next generation sequencing
observed survival interval
omics
omics profiles
oral cancer
ovarian cancer
overall survival
pancreatic cancer
pathophysiology
PD-L1
precision medicine
predictive model
protein
R package
RNA
self-organizing map
single-biomarkers
single-cell sequencing
skin cutaneous melanoma
somatic mutation
StAR
steroidogenic enzymes
survival analysis
TCGA
TCGA mining
telomerase
telomeres
The Cancer Genome Atlas
traditional Chinese medicine
transcriptional signatures
treatment de-escalation
tumor
tumor infiltrating lymphocytes
tumor microenvironment
variable selection
ISBN 3-03921-789-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367743403321
Brenner J. Chad  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass
Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass
Autore Aranha José
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (276 p.)
Soggetto topico Geography
Research and information: general
Soggetto non controllato above-ground biomass
aboveground biomass
AGB estimation and mapping
allometric equation
ALOS DSM
ALOS-2 L band SAR
bark roughness
bioenergy
biomass density
biomass estimation
DBH
diameter at breast height
ecosystem services
forest AGC estimation
forest biomass estimation
forest growing stock volume
forest inventory data
forest succession
forest type
GEOMON
GIS
individual tree detection
landsat
Landsat 8 OLI
Landsat dataset
leaf area index
LiDAR
machine learning
machine learning algorithms
mangroves
map quality
multiple ES interactions
multisource remote sensing
nondestructive method
norway spruce
ordinary kriging
Pinus massoniana plantations
plant area index
random forest
remote sensing
seasonal images
sentinel 2
Sentinel-1 C band SAR
Sentinel-2 MSI
Sentinel-2A
shrubs biomass
spatiotemporal evolution
SPOT6 imagery
stand volume
stepwise regression
subtropical forest
subtropical forests
support vector machine for regression
synergy
terrestrial laser scanning
trade-off
tree height
UAV LiDAR
urban vegetation
valley basin
variable selection
vegetation indices
WorldView-2
Xuzhou
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557474803321
Aranha José  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioinformatics and Machine Learning for Cancer Biology
Bioinformatics and Machine Learning for Cancer Biology
Autore Wan Shibiao
Pubbl/distr/stampa Basel, : MDPI Books, 2022
Descrizione fisica 1 electronic resource (196 p.)
Soggetto topico Research & information: general
Biology, life sciences
Soggetto non controllato tumor mutational burden
DNA damage repair genes
immunotherapy
biomarker
biomedical informatics
breast cancer
estrogen receptor alpha
persistent organic pollutants
drug-drug interaction networks
molecular docking
NGS
ctDNA
VAF
liquid biopsy
filtering
variant calling
DEGs
diagnosis
ovarian cancer
PUS7
RMGs
CPA4
bladder urothelial carcinoma
immune cells
T cell exhaustion
checkpoint
architectural distortion
image processing
depth-wise convolutional neural network
mammography
bladder cancer
Annexin family
survival analysis
prognostic signature
therapeutic target
R Shiny application
RNA-seq
proteomics
multi-omics analysis
T-cell acute lymphoblastic leukemia
CCLE
sitagliptin
thyroid cancer (THCA)
papillary thyroid cancer (PTCa)
thyroidectomy
metastasis
drug resistance
biomarker identification
transcriptomics
machine learning
prediction
variable selection
major histocompatibility complex
bidirectional long short-term memory neural network
deep learning
cancer
incidence
mortality
modeling
forecasting
Google Trends
Romania
ARIMA
TBATS
NNAR
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910595077403321
Wan Shibiao  
Basel, : MDPI Books, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent Soft Sensors
Intelligent Soft Sensors
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2023
Descrizione fisica 1 online resource (230 p.)
Soggetto topico History of engineering and technology
Technology: general issues
Soggetto non controllato affective computing
bioprocess monitoring
BIS index
computerized adaptive testing (CAT)
D-S evidence theory
depth of hypnosis
early fire warning
EDA
electrical resistance
executive functions
extended Kalman filter
extreme learning machine
frequency analysis
general anesthesia
hybrid feature fusion
image feature extraction
improved mathematical model
improved particle swarm algorithm
intelligent building system
joule heating effect
keyframe extraction
kinetic model
least squares support vector machine
modelling
multi-source data fusion
n/a
neurodevelopmental disorders
non-linear models
nonlinear regression model
nonlinear systems
observability
outliers
physiological signals
Pichia pastoris
population-data-based model
prognostic and health management
propofol
Raman
residual model
robust observer
self-sensing actuation
sensor selection
shape memory coil
simulator
sintering quality prediction
soft sensor
soft sensors
soft-sensor based diagnosis
spectroscopy
state estimation
stress detection
support vector machine regression model
target-controlled infusion
total intravenous anesthesia
transfer learning
variable selection
variable stiffness actuation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910743269003321
MDPI - Multidisciplinary Digital Publishing Institute, 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning in Sensors and Imaging
Machine Learning in Sensors and Imaging
Autore Nam Hyoungsik
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (302 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato activity recognition
artificial neural network
BLDC
BP artificial neural network
burr formation
capacitive
chaotic system
color prior model
compressive sensing
computer vision
coniferous plantations
convex optimization
convolutional neural network
cut interruption
deep learning
display
electric machine protection
explainable artificial intelligence
extrinsic camera calibration
fiber laser
forest growing stem volume
fuzzy
image classification
image denoising
image encryption
imbalanced activities
intelligent vehicles
laser cutting
machine learning
machine learning-based classification
marine
maximum likelihood estimation
mixed Poisson-Gaussian likelihood
modulation transfer function
Naïve bayes
neural network
noisy
non-uniform foundation
object detection
obstacle avoidance
on-shelf availability
path planning
piston error detection
plaintext related
plankton
Q-learning
quality monitoring
random forest
real-world
red-edge band
reinforcement learning
risk assessment
robot arm
sampling methods
segmented telescope
semi-supervised
semi-supervised learning
SNR
star image
stochastic analysis
structure from motion
stylus
target reaching
temperature estimation
texture feature
touchscreen
transmission-line corridors
variable selection
vehicle-pavement-foundation interaction
wearable sensors
wildfire
YOLO algorithm
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566484703321
Nam Hyoungsik  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing / Hyung-Sup Jung, Saro Lee
Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing / Hyung-Sup Jung, Saro Lee
Autore Jung Hyung-Sup
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (438 p.)
Soggetto topico Pharmaceutical chemistry and technology
Soggetto non controllato artificial neural network
model switching
sensitivity analysis
neural networks
logit boost
Qaidam Basin
land subsidence
land use/land cover (LULC)
naïve Bayes
multilayer perceptron
convolutional neural networks
single-class data descriptors
logistic regression
feature selection
mapping
particulate matter 10 (PM10)
Bayes net
gray-level co-occurrence matrix
multi-scale
Logistic Model Trees
classification
Panax notoginseng
large scene
coarse particle
grayscale aerial image
Gaofen-2
environmental variables
variable selection
spatial predictive models
weights of evidence
landslide prediction
random forest
boosted regression tree
convolutional network
Vietnam
model validation
colorization
data mining techniques
spatial predictions
SCAI
unmanned aerial vehicle
high-resolution
texture
spatial sparse recovery
landslide susceptibility map
machine learning
reproducible research
constrained spatial smoothing
support vector machine
random forest regression
model assessment
information gain
ALS point cloud
bagging ensemble
one-class classifiers
leaf area index (LAI)
landslide susceptibility
landsat image
ionospheric delay constraints
spatial spline regression
remote sensing image segmentation
panchromatic
Sentinel-2
remote sensing
optical remote sensing
materia medica resource
GIS
precise weighting
change detection
TRMM
traffic CO
crop
training sample size
convergence time
object detection
gully erosion
deep learning
classification-based learning
transfer learning
landslide
traffic CO prediction
hybrid model
winter wheat spatial distribution
logistic
alternating direction method of multipliers
hybrid structure convolutional neural networks
geoherb
predictive accuracy
real-time precise point positioning
spectral bands
ISBN 9783039212163
3039212168
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367564103321
Jung Hyung-Sup  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metabolomics Data Processing and Data Analysis-Current Best Practices
Metabolomics Data Processing and Data Analysis-Current Best Practices
Autore Hanhineva Kati
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (276 p.)
Soggetto topico Research & information: general
Soggetto non controllato all ion fragmentation
biostatistics
bootstrapped-VIP
chemical classification
combinatorial fragmentation
compound identification
computational metabolomics
computational statistical
constraint-based modeling
data processing
data repository
data-dependent acquisition (DDA)
data-independent acquisition
disease risk
enrichment analysis
environmental factors
experimental design
flux balance
forensics
fragmentation (MS/MS)
full-scan MS/MS processing
genome-scale metabolic modeling
global metabolomics
gut microbiome
host-microbiome
in silico
in silico workflows
ion selection algorithms
LC-MS
lipidomics
liquid chromatography
liquid chromatography high-resolution mass spectrometry
liquid chromatography mass spectrometry
liquid chromatography-mass spectrometry (LC-MS)
liquid chromatography-mass spectrometry (LC/MS)
mass spectral libraries
mass spectrometry
mass spectrometry imaging
meta-omics
metabolic networks
metabolic pathway and network analysis
metabolic profiling
metabolic reconstructions
metabolism
metabolite annotation
metabolite identification
metabolome mining
metabolomics
metabolomics data mapping
metabolomics imaging
metagenomics
molecular families
MS spectral prediction
multivariate risk modeling
networking
nontarget analysis
NPLS
pathway analysis
PLS
R programming
R-MetaboList 2
reanalysis
rule-based fragmentation
sample preparation
simulator
spectra processing
structure-based chemical classification
substructures
supervised learning
tandem mass spectral library
targeted analysis
time series
triplot
univariate and multivariate statistics
unsupervised learning
untargeted analysis
untargeted metabolomics
variable selection
wastewater
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557354403321
Hanhineva Kati  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical Linear Algebra and the Applications
Numerical Linear Algebra and the Applications
Autore Jbilou Khalide
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (126 p.)
Soggetto topico Information technology industries
Soggetto non controllato approximation algorithm
chiral media
cosine product
eigenvalues
estimates
fixed-point principle
Golub-Kahan algorithm
high-dimensional
inverse scattering
Krylov subspaces
lanczos method
large-scale matrices
ℓp-ℓq
Lyapunov majorants
matrix polynomial
minimum norm solution
mixed boundary conditions
networks
non-linear matrix equations
nonsymmetric differential matrix Riccati equation
PCA
Perron root
perron vector
perturbation
perturbation bounds
power method
pseudospectra
quadratic form
reciprocity gap functional
regularisation
SVD
tensors
Tikhonov
upper bounds
variable selection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557359403321
Jbilou Khalide  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui