top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Computational Intelligence Applications in the Mining Industry
Advances in Computational Intelligence Applications in the Mining Industry
Autore Ganguli Rajive
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (324 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato truck dispatching
mining equipment uncertainties
orebody uncertainty
discrete event simulation
Q-learning
grinding circuits
minerals processing
random forest
decision trees
machine learning
knowledge discovery
variable importance
mineral prospectivity mapping
random forest algorithm
epithermal gold
unstructured data
blast impact
empirical model
mining
fragmentation
mine worker fatigue
random forest model
health and safety management
stockpiles
operational data
mine-to-mill
geostatistics
ore control
mine optimization
digital twin
modes of operation
geological uncertainty
multivariate statistics
partial least squares regression
oil sands
bitumen extraction
bitumen processability
mine safety and health
accidents
narratives
natural language processing
random forest classification
hyperspectral imaging
multispectral imaging
dimensionality reduction
neighbourhood component analysis
artificial intelligence
mining exploitation
masonry buildings
damage risk analysis
Bayesian network
Naive Bayes
Bayesian Network Structure Learning (BNSL)
rock type
mining geology
bluetooth beacon
classification and regression tree
gaussian naïve bayes
k-nearest neighbors
support vector machine
transport route
transport time
underground mine
tactical geometallurgy
data analytics in mining
ball mill throughput
measurement while drilling
non-additivity
coal
petrographic analysis
macerals
image analysis
semantic segmentation
convolutional neural networks
point cloud scaling
fragmentation size analysis
structure from motion
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557613103321
Ganguli Rajive  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Forest Fire Risk Prediction
Forest Fire Risk Prediction
Autore Nolan Rachael
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (235 p.)
Soggetto topico Research & information: general
Biology, life sciences
Forestry & related industries
Soggetto non controllato fire danger rating
fire management
fire regime
fire size
fire weather
Portugal
critical LFMC threshold
forest/grassland fire
radiative transfer model
remote sensing
southwest China
acid rain
aerosol
biomass burning
forest fire
PM2.5
direct estimation
meteorological factor regression
moisture content
time lag
forest fire driving factors
forest fire occurrence
random forest
forest fire management
China
Cupressus sempervirens
fire risk
fuels
fuel moisture content
mass loss calorimeter
Seiridium cardinale
vulnerability to wildfires
disease
alien pathogen
allochthonous species
introduced fungus
drying tests
humidity diffusion coefficients
wildfire
prescribed burning
modeling
drought
flammability
fuel moisture
leaf water potential
plant traits
climate change
MNI
fire season
fire behavior
crown fire
fire modeling
senescence
foliar moisture content
canopy bulk density
fire danger
fire weather patterns
RCP
FWI system
SSR
occurrence of forest fire
machine learning
variable importance
prediction accuracy
epicormic resprouter
eucalyptus
fire severity
flammability feedbacks
temperate forest
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557387103321
Nolan Rachael  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
UAVs for Vegetation Monitoring
UAVs for Vegetation Monitoring
Autore de Castro Megías Ana
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (452 p.)
Soggetto topico Research & information: general
Soggetto non controllato UAS
UAV
vegetation cover
multispectral
land cover
forest
Acacia
Indonesia
tropics
vegetation ground cover
vegetation indices
agro-environmental measures
olive groves
southern Spain
sUAS
water stress
ornamental
container-grown
artificial intelligence
machine learning
deep learning
neural network
visual recognition
precision agriculture
canopy cover
image analysis
crop mapping
evapotranspiration (ET)
GRAPEX
remote sensing
Two Source Energy Balance model (TSEB)
contextual spatial domain/resolution
data aggregation
eddy covariance (EC)
Fusarium wilt
crop disease
banana
multispectral remote sensing
purple rapeseed leaves
unmanned aerial vehicle
U-Net
plant segmentation
nitrogen stress
Glycine max
RGB
canopy height
close remote sensing
growth model
curve fitting
NDVI
solar zenith angle
flight altitude
time of day
operating parameters
CNN
Faster RCNN
SSD
Inception v2
patch-based CNN
MobileNet v2
detection performance
inference time
disease detection
cotton root rot
plant-level
single-plant
plant-by-plant
classification
UAV remote sensing
crop monitoring
RGB imagery
multispectral imagery
century-old biochar
semantic segmentation
random forest
crop canopy
multispectral image
chlorophyll content
remote sensing technique
individual plant segmentation
plant detection
transfer learning
maize tassel
tassel branch number
convolution neural network
VGG16
plant nitrogen estimation
vegetation index
image segmentation
transpiration
method comparison
oil palm
multiple linear regression
support vector machine
artificial neural network
UAV hyperspectral
wheat yellow rust
disease monitoring
texture
spatial resolution
RGB camera
thermal camera
drought tolerance
forage grass
HSV
CIELab
broad-sense heritability
phenotyping gap
high throughput field phenotyping
UAV digital images
winter wheat biomass
multiscale textures
red-edge spectra
least squares support vector machine
variable importance
drone
hyperspectral
thermal
nutrient deficiency
weed detection
disease diagnosis
plant trails
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557661103321
de Castro Megías Ana  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui