top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Computational Intelligence Applications in the Mining Industry
Advances in Computational Intelligence Applications in the Mining Industry
Autore Ganguli Rajive
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (324 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato accidents
artificial intelligence
ball mill throughput
Bayesian network
Bayesian Network Structure Learning (BNSL)
bitumen extraction
bitumen processability
blast impact
bluetooth beacon
classification and regression tree
coal
convolutional neural networks
damage risk analysis
data analytics in mining
decision trees
digital twin
dimensionality reduction
discrete event simulation
empirical model
epithermal gold
fragmentation
fragmentation size analysis
gaussian naïve bayes
geological uncertainty
geostatistics
grinding circuits
health and safety management
hyperspectral imaging
image analysis
k-nearest neighbors
knowledge discovery
macerals
machine learning
masonry buildings
measurement while drilling
mine optimization
mine safety and health
mine worker fatigue
mine-to-mill
mineral prospectivity mapping
minerals processing
mining
mining equipment uncertainties
mining exploitation
mining geology
modes of operation
multispectral imaging
multivariate statistics
n/a
Naive Bayes
narratives
natural language processing
neighbourhood component analysis
non-additivity
oil sands
operational data
ore control
orebody uncertainty
partial least squares regression
petrographic analysis
point cloud scaling
Q-learning
random forest
random forest algorithm
random forest classification
random forest model
rock type
semantic segmentation
stockpiles
structure from motion
support vector machine
tactical geometallurgy
transport route
transport time
truck dispatching
underground mine
unstructured data
variable importance
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557613103321
Ganguli Rajive  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Forest Fire Risk Prediction
Forest Fire Risk Prediction
Autore Nolan Rachael
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (235 p.)
Soggetto topico Biology, life sciences
Forestry & related industries
Research & information: general
Soggetto non controllato acid rain
aerosol
alien pathogen
allochthonous species
biomass burning
canopy bulk density
China
climate change
critical LFMC threshold
crown fire
Cupressus sempervirens
direct estimation
disease
drought
drying tests
epicormic resprouter
eucalyptus
fire behavior
fire danger
fire danger rating
fire management
fire modeling
fire regime
fire risk
fire season
fire severity
fire size
fire weather
fire weather patterns
flammability
flammability feedbacks
foliar moisture content
forest fire
forest fire driving factors
forest fire management
forest fire occurrence
forest/grassland fire
fuel moisture
fuel moisture content
fuels
FWI system
humidity diffusion coefficients
introduced fungus
leaf water potential
machine learning
mass loss calorimeter
meteorological factor regression
MNI
modeling
moisture content
n/a
occurrence of forest fire
plant traits
PM2.5
Portugal
prediction accuracy
prescribed burning
radiative transfer model
random forest
RCP
remote sensing
Seiridium cardinale
senescence
southwest China
SSR
temperate forest
time lag
variable importance
vulnerability to wildfires
wildfire
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557387103321
Nolan Rachael  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
UAVs for Vegetation Monitoring
UAVs for Vegetation Monitoring
Autore de Castro Megías Ana
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (452 p.)
Soggetto topico Research & information: general
Soggetto non controllato Acacia
agro-environmental measures
artificial intelligence
artificial neural network
banana
broad-sense heritability
canopy cover
canopy height
century-old biochar
chlorophyll content
CIELab
classification
close remote sensing
CNN
container-grown
contextual spatial domain/resolution
convolution neural network
cotton root rot
crop canopy
crop disease
crop mapping
crop monitoring
curve fitting
data aggregation
deep learning
detection performance
disease detection
disease diagnosis
disease monitoring
drone
drought tolerance
eddy covariance (EC)
evapotranspiration (ET)
Faster RCNN
flight altitude
forage grass
forest
Fusarium wilt
Glycine max
GRAPEX
growth model
high throughput field phenotyping
HSV
hyperspectral
image analysis
image segmentation
Inception v2
individual plant segmentation
Indonesia
inference time
land cover
least squares support vector machine
machine learning
maize tassel
method comparison
MobileNet v2
multiple linear regression
multiscale textures
multispectral
multispectral image
multispectral imagery
multispectral remote sensing
NDVI
neural network
nitrogen stress
nutrient deficiency
oil palm
olive groves
operating parameters
ornamental
patch-based CNN
phenotyping gap
plant detection
plant nitrogen estimation
plant segmentation
plant trails
plant-by-plant
plant-level
precision agriculture
purple rapeseed leaves
random forest
red-edge spectra
remote sensing
remote sensing technique
RGB
RGB camera
RGB imagery
semantic segmentation
single-plant
solar zenith angle
southern Spain
spatial resolution
SSD
sUAS
support vector machine
tassel branch number
texture
thermal
thermal camera
time of day
transfer learning
transpiration
tropics
Two Source Energy Balance model (TSEB)
U-Net
UAS
UAV
UAV digital images
UAV hyperspectral
UAV remote sensing
unmanned aerial vehicle
variable importance
vegetation cover
vegetation ground cover
vegetation index
vegetation indices
VGG16
visual recognition
water stress
weed detection
wheat yellow rust
winter wheat biomass
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557661103321
de Castro Megías Ana  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui