top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Computational Methods for Oncological Image Analysis
Advanced Computational Methods for Oncological Image Analysis
Autore Rundo Leonardo
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (262 p.)
Soggetto topico Medicine and Nursing
Soggetto non controllato 3D-CNN
bone scintigraphy
brain MRI image
brain tumor
brain tumor segmentation
BRATS dataset
breast cancer
breast cancer detection
breast cancer diagnosis
breast imaging
breast mass
classification
clutter rejection
computer-aided detection
contrast source inversion
dataset partition
deep learning
dimensionality reduction
ensemble classification
ensemble method
false positives reduction
feature selection
image reconstruction
imaging biomarkers
immunotherapy
incoherent imaging
interferometric optical fibers
k-means clustering
Kolmogorov-Smirnov hypothesis test
machine learning
magnetic resonance imaging
mammography
Mask R-CNN
mass detection
mass segmentation
medical imaging
melanoma detection
microwave imaging
MRgFUS
n/a
performance metrics
principal component analysis
prostate cancer
proton resonance frequency shift
radiomics
RBF neural networks
referenceless thermometry
region growing
risk assessment
segmentation
self-attention
semisupervised classification
shallow machine learning
skull stripping
statistical inference
survey
temperature variations
texture
transfer learning
tumor region
U-Net
unsupervised machine learning
Wisconsin Breast Cancer Dataset
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557353503321
Rundo Leonardo  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Sensors, Big Data and Machine Learning in Intelligent Animal Farming
Advances in Sensors, Big Data and Machine Learning in Intelligent Animal Farming
Autore Qiao Yongliang
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (228 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato absorbing Markov chain
additive manufacturing
animal behaviour
animal farming
animal science
animal telemetry
animal-centered design
audio
automated medical image processing
body size
cascaded model
class-balanced focal loss
commercial aviary
computational ethology
computer vision
convolutional neural network
cow
cow behavior analysis
cow identification
CT scans
dairy cow
dairy welfare
deep learning
deep neural network
design contributions
EfficientDet
equine behavior
estimation
extensive livestock
false registrations
forage management
generative adversarial network
group-housed pigs
hierarchical clustering
instance segmentation
intermodality interaction
jaw movement
laying hens
low-frequency tracking
machine learning
mask scoring R-CNN
mastication
modularity
monitoring
mutual information
parturition prediction
pig identification
pig weight
precision livestock farming
precision livestock management
prediction of calving time
radar sensors
radar signal processing
sensorized wearable device
signal classification
smart collar
soft-NMS
time budgets
tree-based classifier
unsupervised machine learning
wavelet analysis
wearable sensor
wearables design
YOLACT++
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576879803321
Qiao Yongliang  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics / Felix Fritzen, David Ryckelynck
Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics / Felix Fritzen, David Ryckelynck
Autore Fritzen Felix
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (254 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato supervised machine learning
proper orthogonal decomposition (POD)
PGD compression
stabilization
nonlinear reduced order model
gappy POD
symplectic model order reduction
neural network
snapshot proper orthogonal decomposition
3D reconstruction
microstructure property linkage
nonlinear material behaviour
proper orthogonal decomposition
reduced basis
ECSW
geometric nonlinearity
POD
model order reduction
elasto-viscoplasticity
sampling
surrogate modeling
model reduction
enhanced POD
archive
modal analysis
low-rank approximation
computational homogenization
artificial neural networks
unsupervised machine learning
large strain
reduced-order model
proper generalised decomposition (PGD)
a priori enrichment
elastoviscoplastic behavior
error indicator
computational homogenisation
empirical cubature method
nonlinear structural mechanics
reduced integration domain
model order reduction (MOR)
structure preservation of symplecticity
heterogeneous data
reduced order modeling (ROM)
parameter-dependent model
data science
Hencky strain
dynamic extrapolation
tensor-train decomposition
hyper-reduction
empirical cubature
randomised SVD
machine learning
inverse problem plasticity
proper symplectic decomposition (PSD)
finite deformation
Hamiltonian system
DEIM
GNAT
ISBN 9783039214105
3039214101
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367759403321
Fritzen Felix  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui