top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
New types of Neutrosophic Set/Logic/Probability, Neutrosophic Over-/Under-/Off-Set, Neutrosophic Refined Set, and their Extension to Plithogenic Set/Logic/Probability, with Applications
New types of Neutrosophic Set/Logic/Probability, Neutrosophic Over-/Under-/Off-Set, Neutrosophic Refined Set, and their Extension to Plithogenic Set/Logic/Probability, with Applications
Autore Smarandache Florentin
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (714 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato ?-level
accuracy function
aggregation
aggregation operations
arithmetic averaging operator
binad
BNHHA aggregation operator
BNHOWA aggregation operator
BNHWA aggregation operator
certainty function
Choquet integral
classical statistics
clifford semigroup
combined weighted average
complex neutrosophic set
complex neutrosophic soft expert set
consumer's risk
covering
cubic sets
De Morgan neutrosophic triples
decision making
decision-making
dietary fat level
distance measure
e-marketing
Einstein t-norm
exponential similarity measure
extended non-standard analysis
extended nonstandard analysis
extended nonstandard neutrosophic logic
financial assets
Function approximation
fuzzy logic
fuzzy numbers
fuzzy parameterized single valued neutrosophic soft expert set
generalized neutrosophic extended triplet group
graph representation
group decision making
hypergroup
idempotents
implicator
infinitely ?-distributive
infinitesimals
infinities
Internet of Things
intuitionistic fuzzy parameters
left monad closed to the right
logarithmic aggregation operators
logarithmic operational laws
low-carbon supplier selection
MAGDM
matrix representation
maximizing deviation
MCGDM problems
membership function
MoBiNad set
monad
multi-attribute decision making
Multi-attribute decision making
multi-attribute decision-making
multi-attribute decision-making (MADM)
multi-attribute group decision making
multi-criteria decision making techniques
multi-granulation neutrosophic rough set
multicriteria decision-making
n-person cooperative game
NET-hypergroup
Neutrosophic compound orthogonal neural network
neutrosophic correlation
neutrosophic cubic Einstein ordered weighted geometric operator (NCEOWG)
neutrosophic cubic Einstein weighted geometric operator (NCEWG)
neutrosophic cubic hybrid weighted arithmetic and geometric aggregation operator (NCHWAGA)
neutrosophic cubic ordered weighted geometric operator (NCOWG)
neutrosophic cubic sets
neutrosophic cubic soft expert system
neutrosophic cubic soft sets
neutrosophic cubic weighted geometric operator (NCWG)
neutrosophic extended triplet group
neutrosophic extended triplet semihypergroup (NET-semihypergroup)
Neutrosophic function
neutrosophic goal programming approach
neutrosophic logical relationship
neutrosophic logical relationship groups
Neutrosophic number
neutrosophic numbers
neutrosophic offconorm
neutrosophic offnorm
neutrosophic offset
neutrosophic offuninorm
neutrosophic quadruple numbers
neutrosophic quadruple rings
neutrosophic regression
neutrosophic residual implications
neutrosophic rings
neutrosophic set
neutrosophic sets
neutrosophic soft rough
neutrosophic statistical interval method
neutrosophic statistics
neutrosophic symmetric scenarios
neutrosophic time series
neutrosophic topology
neutrosophic triangular norms
neutrosophic weight
neutrsophic set
non-dual
non-standard analysis
non-standard neutrosophic mobinad set
non-standard neutrosophic topology
nonstandard analysis
nonstandard arithmetic operations
nonstandard neutrosophic infimum
nonstandard neutrosophic lattices of first type (as poset) and second type (as algebraic structure)
nonstandard neutrosophic logic
nonstandard neutrosophic supremum
nonstandard reals
nonstandard unit interval
numerical application
objectness
open and closed monads to the left/right
optimization solution
ordinary single valued neutrosophic (co)topology
ordinary single valued neutrosophic base
ordinary single valued neutrosophic neighborhood system
ordinary single valued neutrosophic subbase
ordinary single valued neutrosophic subspace
paper defect diagnosis
performance indicators
pierced and unpierced binads
pierced binad
plithogeny
port evaluation
probabilistic neutrosophic hesitant fuzzy set (PNHFS)
producer's risk
producer's risk'
prospector
prostate cancer
Q-neutrosophic set
Q-neutrosophic soft set
quality function deployment
quasi-completely regular semigroup
refined neutrosophic numbers
refined neutrosophic quadruple numbers
relations
representable neutrosophic t-norms
residuated lattices
right monad closed to the left
rough set approximation
sample size
sampling plan
score function
semihypergroup
shale gas water management system
simplified neutrosophic hesitant fuzzy set
simplified neutrosophic set
single valued neutrosophic set
single valued neutrosophic sets
single-valued neutrosophic linguistic set
single-valued neutrosophic set
single-valued neutrosophic soft number and its operations
smart port
soft expert set
soft set
soft sets
standard reals
supply chain sustainability metrics
SVN soft weighted arithmetic averaging operator
SVN soft weighted geometric averaging operator
symmetric relation
TOPSIS
triangular neutrosophic cubic fuzzy number
triangular neutrosophic number
two universes
uncertainty modeling
uninorm
unpierced binad
visual tracking
weighted average operator
weighted geometric operator
weighted multiple instance learning
ISBN 3-03921-939-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367741303321
Smarandache Florentin  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Theory and Applications of Ordered Fuzzy Numbers [[electronic resource] ] : A Tribute to Professor Witold Kosiński / / edited by Piotr Prokopowicz, Jacek Czerniak, Dariusz Mikołajewski, Łukasz Apiecionek, Dominik Ślȩzak
Theory and Applications of Ordered Fuzzy Numbers [[electronic resource] ] : A Tribute to Professor Witold Kosiński / / edited by Piotr Prokopowicz, Jacek Czerniak, Dariusz Mikołajewski, Łukasz Apiecionek, Dominik Ślȩzak
Autore Łukasz Apiecionek
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Springer Nature, 2017
Descrizione fisica 1 online resource (XVIII, 322 p. 156 illus., 106 illus. in color.)
Disciplina 006.3
Collana Studies in Fuzziness and Soft Computing
Soggetto topico Computational intelligence
Control engineering
Operations research
Decision making
Management science
Computational Intelligence
Control and Systems Theory
Operations Research/Decision Theory
Operations Research, Management Science
Soggetto non controllato fuzzy prediction models
uncertainty modeling
trend processing
propagation of uncertainty
fuzzy arithmetic
analysis
defuzzyfication
Kosinski’s fuzzy numbers
ISBN 3-319-59614-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Memories of Professor Witold Kosiński -- Scientific Development -- Scientific and Academic Achievements (Part I) -- Scientific and Academic Achievements (Part II) -- Scientific Collaboration -- Teaching and Supervision -- Scientific and Social Services -- Personality and Memoires -- Acknowledgements -- Contents -- Part I Background of Fuzzy Set Theory -- 1 Introduction to Fuzzy Sets -- 1.1 Classic and Fuzzy Sets -- 1.2 Fuzzy Sets---Basic Definitions -- 1.3 Extension Principle -- 1.4 Fuzzy Relations -- 1.5 Cylindrical Extension and Projection of a Fuzzy Set -- 1.6 Fuzzy Numbers -- 1.7 Summary -- References -- 2 Introduction to Fuzzy Systems -- 2.1 Introduction -- 2.2 Fuzzy Conditional Rules -- 2.3 Approximate Reasoning -- 2.3.1 Compositional Rule of Inference -- 2.3.2 Approximate Reasoning with Knowledge Base -- 2.3.3 Fuzzification and Defuzzification -- 2.4 Basic Types of Fuzzy Systems -- 2.4.1 Mamdani--Assilan Fuzzy Model -- 2.4.2 Takagi--Sugeno--Kang Fuzzy System -- 2.4.3 Tsukamoto Fuzzy System -- 2.5 Summary -- References -- Part II Theory of Ordered Fuzzy Numbers -- 3 Ordered Fuzzy Numbers: Sources and Intuitions -- 3.1 Introduction -- 3.2 Problems with Calculations on Fuzzy Numbers -- 3.3 Related Work -- 3.4 Decomposition of Fuzzy Memberships -- 3.5 Idea of Ordered Fuzzy Numbers -- 3.6 Summary -- References -- 4 Ordered Fuzzy Numbers: Definitions and Operations -- 4.1 Introduction -- 4.2 The Ordered Fuzzy Number Model -- 4.3 Basic Notions for OFNs -- 4.3.1 Standard Representation of OFNs -- 4.3.2 OFN Support -- 4.3.3 OFN Membership Function -- 4.3.4 Real Numbers as OFN Singletons -- 4.4 Improper OFNs -- 4.5 Basic Operations on OFNs -- 4.5.1 Addition and Subtraction -- 4.5.2 Multiplication and Division -- 4.5.3 General Model of Operations -- 4.5.4 Solving Equations -- 4.6 Interpretations of OFNs.
4.6.1 Direction as a Trend -- 4.6.2 Validity of Operations -- 4.6.3 The Meaning of Improper OFNs -- 4.7 Summary and Further Intuitions -- References -- 5 Processing Direction with Ordered Fuzzy Numbers -- 5.1 Introduction -- 5.2 Direction Measurement Tool -- 5.2.1 The PART Function -- 5.2.2 The Direction Determinant -- 5.3 Compatibility Between OFNs -- 5.4 Inference Sensitive to Direction -- 5.4.1 Directed Inference Operation -- 5.4.2 Examples -- 5.5 Aggregation of OFNs -- 5.5.1 The Aggregation's Basic Properties -- 5.5.2 Arithmetic Mean Directed Aggregation -- 5.5.3 Aggregation for Premise Parts of Fuzzy Rules -- 5.6 Summary -- References -- 6 Comparing Fuzzy Numbers Using Defuzzificators on OFN Shapes -- 6.1 Introduction -- 6.2 Formal Approach to the Problem -- 6.3 Defuzzification Methods -- 6.3.1 Defuzzification Methods for OFN -- 6.4 Definition of Golden Ratio Defuzzification Operator -- 6.4.1 Golden Ratio for OFN -- 6.5 Golden Ratio -- 6.6 Defuzzification Conditions for GR -- 6.6.1 Normalization -- 6.6.2 Restricted Additivity -- 6.6.3 Homogeneity -- 6.7 Definition of Mandala Factor Defuzzification Operator -- 6.8 Mandala Factor -- 6.9 Defuzzification Conditions for MF -- 6.9.1 Normalization -- 6.9.2 Restricted Additivity -- 6.9.3 Homogeneity -- 6.10 Catalogue of the Shapes of Numbers in OFN Notation -- 6.11 Conclusion -- References -- 7 Two Approaches to Fuzzy Implication -- 7.1 Introduction -- 7.2 Lattice Structure and Implications on SOFNs -- 7.2.1 Step-Ordered Fuzzy Numbers -- 7.2.2 Lattice on mathcalRK -- 7.2.3 Complements and Negation on calN -- 7.2.4 Fuzzy Implication on BSOFN -- 7.2.5 Applications -- 7.3 Metasets -- 7.3.1 The Binary Tree T and the Boolean Algebra mathfrakB -- 7.3.2 General Definition of Metaset -- 7.3.3 Interpretations of Metasets -- 7.3.4 Forcing -- 7.3.5 Set-Theoretic Relations for Metasets.
7.3.6 Applications of Metasets -- 7.3.7 Classical and Fuzzy Implication -- 7.4 Conclusions and Further Research -- References -- Part III Examples of Applications -- 8 OFN Capital Budgeting Under Uncertainty and Risk -- 8.1 Introduction -- 8.2 Ordered Fuzzy Numbers -- 8.3 Classic Capital Budgeting Methods -- 8.4 Fuzzy Approach to the Discount Methods -- 8.5 Computational Example of the Investment Project -- 8.6 Summary -- References -- 9 Input-Output Model Based on Ordered Fuzzy Numbers -- 9.1 Introduction -- 9.2 Input-Output Analysis -- 9.3 Example of Application of OFNs in the Leontief Model -- 9.4 Conclusions -- References -- 10 Ordered Fuzzy Candlesticks -- 10.1 Introduction -- 10.2 Ordered Fuzzy Candlesticks -- 10.3 Volume and Spread -- 10.3.1 Volume -- 10.3.2 Spread -- 10.4 Ordered Fuzzy Candlesticks in Technical Analysis -- 10.4.1 Ordered Fuzzy Technical Analysis Indicators -- 10.4.2 Ordered Fuzzy Candlestick as Technical Analysis Indicator -- 10.5 Ordered Fuzzy Time Series Models -- 10.6 Conclusion and Future Works -- References -- 11 Detecting Nasdaq Composite Index Trends with OFNs -- 11.1 Introduction -- 11.2 Application of OFN Notation for the Fuzzy Observation of NASDAQ Composite -- 11.3 Ordered Fuzzy Number Formulas -- 11.4 Conclusions -- References -- 12 OFNAnt Method Based on TSP Ant Colony Optimization -- 12.1 Introduction -- 12.2 Application of Ant Colony Algorithms in Searching for the Optimal Route -- 12.3 OFNAnt, a New Ant Colony Algorithm -- 12.4 Experiment -- 12.4.1 Experiment Execution Method -- 12.4.2 Software Used for Experiment -- 12.4.3 Experimental Data -- 12.5 Results of Experiment -- 12.6 Summary and Conclusions -- References -- 13 A New OFNBee Method as an Example of Fuzzy Observance Applied for ABC Optimization -- 13.1 Introduction -- 13.2 ABC (Artificial Bee Colony) Model -- 13.3 Selected OFN Issues.
13.4 New Hybrid OFNBee Method -- 13.5 Experimental Results -- 13.6 Conclusion -- References -- 14 Fuzzy Observation of DDoS Attack -- 14.1 Introduction -- 14.2 DDoS Attack Description and Recognition -- 14.3 The Idea of Attack Recognition and Prevention -- 14.4 Attack Observation Using OFNs -- 14.5 Experiment Test Results -- 14.5.1 Test Description -- 14.5.2 Attack Detection Using Proposed Method -- 14.6 Conclusions-Method Comparision -- References -- 15 Fuzzy Control for Secure TCP Transfer -- 15.1 Introduction -- 15.2 Multipath TCP -- 15.3 Multipath TCP Schedulers -- 15.3.1 Multipath TCP Standard Scheduler -- 15.3.2 Multipath TCP Secure Scheduler -- 15.3.3 Multipath TCP Scheduler with OFN Usage -- 15.3.4 OFN for Problem Detection -- 15.4 OFN Scheduler Algorithm -- 15.5 Simulation Test Results -- 15.6 Conclusions -- References -- 16 Fuzzy Numbers Applied to a Heat Furnace Control -- 16.1 Introduction -- 16.2 Selected Definitions -- 16.2.1 The Essence of Ordered Fuzzy Numbers -- 16.2.2 Fuzzy Controller -- 16.2.3 Control of the Stove on Solid Fuel -- 16.3 Classic Fuzzy Controller -- 16.4 The Controller for the OFNs -- 16.4.1 Directed OFN as a Combustion Trend -- 16.5 Modeling Trend in the Inference Process -- 16.6 Conclusions -- References -- 17 Analysis of Temporospatial Gait Parameters -- 17.1 Introduction -- 17.2 Methods -- 17.2.1 Subjects -- 17.2.2 Methods -- 17.2.3 Statistical Analysis -- 17.2.4 Fuzzy-Based Tool for Gait Assessment -- 17.2.5 Main Ideas of the OFN Model -- 17.2.6 OFN Model in Gait Assessment -- 17.3 Results -- 17.4 Discussion -- 17.5 Conclusions -- References -- 18 OFN-Based Brain Function Modeling -- 18.1 Introduction -- 18.2 State of the Art -- 18.2.1 Theory -- 18.2.2 Modeling Complex Ideas with Fuzzy Systems -- 18.2.3 Clinical Practice -- 18.2.4 Models for Linking Hypotheses and Experimental Studies -- 18.3 Concepts.
18.3.1 Data Ladder -- 18.3.2 Models of a Single Neuron -- 18.3.3 Models of Biologically Relevant Neural Networks -- 18.3.4 Models of Human Behavior -- 18.4 Traditional versus Fuzzy Approach -- 18.5 OFN as an Alternative Approach to Fuzziness -- 18.6 Patterns and Examples -- 18.6.1 Intuitive Modeling of the Complex Functions -- 18.6.2 Improving Policy Gradient Method -- 18.6.3 Modeling Learning Rate with the OFNs -- 18.7 Discussion -- 18.7.1 Results of Other Scientists -- 18.7.2 Limitations of Our Approach and Directions for Further Research -- 18.8 Conclusions -- References.
Record Nr. UNINA-9910231246403321
Łukasz Apiecionek  
Springer Nature, 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui