Machine Learning in Sensors and Imaging
| Machine Learning in Sensors and Imaging |
| Autore | Nam Hyoungsik |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (302 p.) |
| Soggetto topico |
History of engineering & technology
Technology: general issues |
| Soggetto non controllato |
activity recognition
artificial neural network BLDC BP artificial neural network burr formation capacitive chaotic system color prior model compressive sensing computer vision coniferous plantations convex optimization convolutional neural network cut interruption deep learning display electric machine protection explainable artificial intelligence extrinsic camera calibration fiber laser forest growing stem volume fuzzy image classification image denoising image encryption imbalanced activities intelligent vehicles laser cutting machine learning machine learning-based classification marine maximum likelihood estimation mixed Poisson-Gaussian likelihood modulation transfer function Naïve bayes neural network noisy non-uniform foundation object detection obstacle avoidance on-shelf availability path planning piston error detection plaintext related plankton Q-learning quality monitoring random forest real-world red-edge band reinforcement learning risk assessment robot arm sampling methods segmented telescope semi-supervised semi-supervised learning SNR star image stochastic analysis structure from motion stylus target reaching temperature estimation texture feature touchscreen transmission-line corridors variable selection vehicle-pavement-foundation interaction wearable sensors wildfire YOLO algorithm |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910566484703321 |
Nam Hyoungsik
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Multi-Sensory Interaction for Blind and Visually Impaired People
| Multi-Sensory Interaction for Blind and Visually Impaired People |
| Autore | Cho Jun Dong |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (300 p.) |
| Soggetto topico |
Paintings and painting
The Arts |
| Soggetto non controllato |
accessibility
accessibility technology aesthetics art appreciation assistive technology auditory interface auralization blind color color identification color sound coding cross modular association exhibition environments image accessibility media art multi-sensory multi-sensory interaction multi-sensory interface multimedia data processing multimodal interaction museum exhibits music recommendation system n/a nonvisual feedback people with visual impairment scent interface soundscape music systematic review tactile perception temperature-depth coding thermal interaction touch interface touchscreen universal design user experience vision impairment visual impairment visually impaired visually impaired people weakly supervised learning |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557621203321 |
Cho Jun Dong
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||