top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine Learning in Sensors and Imaging
Machine Learning in Sensors and Imaging
Autore Nam Hyoungsik
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (302 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato star image
image denoising
reinforcement learning
maximum likelihood estimation
mixed Poisson–Gaussian likelihood
machine learning-based classification
non-uniform foundation
stochastic analysis
vehicle–pavement–foundation interaction
forest growing stem volume
coniferous plantations
variable selection
texture feature
random forest
red-edge band
on-shelf availability
semi-supervised learning
deep learning
image classification
machine learning
explainable artificial intelligence
wildfire
risk assessment
Naïve bayes
transmission-line corridors
image encryption
compressive sensing
plaintext related
chaotic system
convolutional neural network
color prior model
object detection
piston error detection
segmented telescope
BP artificial neural network
modulation transfer function
computer vision
intelligent vehicles
extrinsic camera calibration
structure from motion
convex optimization
temperature estimation
BLDC
electric machine protection
touchscreen
capacitive
display
SNR
stylus
laser cutting
quality monitoring
artificial neural network
burr formation
cut interruption
fiber laser
semi-supervised
fuzzy
noisy
real-world
plankton
marine
activity recognition
wearable sensors
imbalanced activities
sampling methods
path planning
Q-learning
neural network
YOLO algorithm
robot arm
target reaching
obstacle avoidance
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566484703321
Nam Hyoungsik  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multi-Sensory Interaction for Blind and Visually Impaired People
Multi-Sensory Interaction for Blind and Visually Impaired People
Autore Cho Jun Dong
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (300 p.)
Soggetto topico The arts
Painting & paintings
Soggetto non controllato visually impaired people
accessibility
art appreciation
color
temperature-depth coding
thermal interaction
user experience
visually impaired
color sound coding
accessibility technology
multimodal interaction
auditory interface
touch interface
vision impairment
visual impairment
aesthetics
multi-sensory
museum exhibits
color identification
tactile perception
cross modular association
universal design
people with visual impairment
assistive technology
auralization
image accessibility
touchscreen
nonvisual feedback
blind
systematic review
music recommendation system
multimedia data processing
weakly supervised learning
soundscape music
media art
exhibition environments
multi-sensory interaction
multi-sensory interface
scent interface
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557621203321
Cho Jun Dong  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui