top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine Learning in Sensors and Imaging
Machine Learning in Sensors and Imaging
Autore Nam Hyoungsik
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (302 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato activity recognition
artificial neural network
BLDC
BP artificial neural network
burr formation
capacitive
chaotic system
color prior model
compressive sensing
computer vision
coniferous plantations
convex optimization
convolutional neural network
cut interruption
deep learning
display
electric machine protection
explainable artificial intelligence
extrinsic camera calibration
fiber laser
forest growing stem volume
fuzzy
image classification
image denoising
image encryption
imbalanced activities
intelligent vehicles
laser cutting
machine learning
machine learning-based classification
marine
maximum likelihood estimation
mixed Poisson-Gaussian likelihood
modulation transfer function
Naïve bayes
neural network
noisy
non-uniform foundation
object detection
obstacle avoidance
on-shelf availability
path planning
piston error detection
plaintext related
plankton
Q-learning
quality monitoring
random forest
real-world
red-edge band
reinforcement learning
risk assessment
robot arm
sampling methods
segmented telescope
semi-supervised
semi-supervised learning
SNR
star image
stochastic analysis
structure from motion
stylus
target reaching
temperature estimation
texture feature
touchscreen
transmission-line corridors
variable selection
vehicle-pavement-foundation interaction
wearable sensors
wildfire
YOLO algorithm
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566484703321
Nam Hyoungsik  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multi-Sensory Interaction for Blind and Visually Impaired People
Multi-Sensory Interaction for Blind and Visually Impaired People
Autore Cho Jun Dong
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (300 p.)
Soggetto topico Paintings and painting
The Arts
Soggetto non controllato accessibility
accessibility technology
aesthetics
art appreciation
assistive technology
auditory interface
auralization
blind
color
color identification
color sound coding
cross modular association
exhibition environments
image accessibility
media art
multi-sensory
multi-sensory interaction
multi-sensory interface
multimedia data processing
multimodal interaction
museum exhibits
music recommendation system
n/a
nonvisual feedback
people with visual impairment
scent interface
soundscape music
systematic review
tactile perception
temperature-depth coding
thermal interaction
touch interface
touchscreen
universal design
user experience
vision impairment
visual impairment
visually impaired
visually impaired people
weakly supervised learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557621203321
Cho Jun Dong  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui