top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Optimization Methods and Big Data Applications in Energy Demand Forecast
Advanced Optimization Methods and Big Data Applications in Energy Demand Forecast
Autore Gómez Vela Francisco A
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (100 p.)
Soggetto topico Research & information: general
Technology: general issues
Soggetto non controllato autoregression
clustering
data filtration
data processing
decision tree
deep learning
electricity demand
energy demand
energy efficiency
evolutionary computation
exponential smoothing
forecasting
k-nearest neighbors
n/a
neuroevolution
photovoltaic power plant
regression
residential building
short-term forecasting
temporal convolutional network
time series
time series forecasting
time-series forecasting
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557776003321
Gómez Vela Francisco A  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Forecasting fundamentals / / Nada R. Sanders
Forecasting fundamentals / / Nada R. Sanders
Autore Sanders Nada R.
Edizione [First edition.]
Pubbl/distr/stampa New York, New York (222 East 46th Street, New York, NY 10017) : , : Business Expert Press, , 2017
Descrizione fisica 1 online resource (126 pages)
Disciplina 658.40355
Collana Supply and operations management collection
Soggetto topico Business forecasting
Soggetto genere / forma Electronic books.
Soggetto non controllato causal methods
collaborative forecasting
forecasting
forecast accuracy measures
forecasting analysis
forecasting in business
forecasting methods
forecasting process
forecasting technology
judgmental forecasting
time-series forecasting
ISBN 1-60649-871-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Section I. Forecasting basics -- 1. Forecasting in business -- 2. The forecasting process -- Section II. Measuring forecast accuracy -- 3. Forecast accuracy measures -- Section III. Basics of forecasting methods -- 4. Categories of forecasting methods -- 5. Judgmental forecasting models -- 6. Statistical forecasting models -- Section IV. Forecasting in the business environment -- 7. Technology in forecasting -- 8. Managing the forecasting process -- Notes -- References -- Index.
Record Nr. UNINA-9910151749203321
Sanders Nada R.  
New York, New York (222 East 46th Street, New York, NY 10017) : , : Business Expert Press, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Forecasting fundamentals / / Nada R. Sanders
Forecasting fundamentals / / Nada R. Sanders
Autore Sanders Nada R.
Edizione [First edition.]
Pubbl/distr/stampa New York, New York (222 East 46th Street, New York, NY 10017) : , : Business Expert Press, , 2017
Descrizione fisica 1 online resource (126 pages)
Disciplina 658.40355
Collana Supply and operations management collection
Soggetto topico Business forecasting
Soggetto non controllato causal methods
collaborative forecasting
forecasting
forecast accuracy measures
forecasting analysis
forecasting in business
forecasting methods
forecasting process
forecasting technology
judgmental forecasting
time-series forecasting
ISBN 1-60649-871-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Section I. Forecasting basics -- 1. Forecasting in business -- 2. The forecasting process -- Section II. Measuring forecast accuracy -- 3. Forecast accuracy measures -- Section III. Basics of forecasting methods -- 4. Categories of forecasting methods -- 5. Judgmental forecasting models -- 6. Statistical forecasting models -- Section IV. Forecasting in the business environment -- 7. Technology in forecasting -- 8. Managing the forecasting process -- Notes -- References -- Index.
Record Nr. UNINA-9910798933503321
Sanders Nada R.  
New York, New York (222 East 46th Street, New York, NY 10017) : , : Business Expert Press, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Forecasting fundamentals / / Nada R. Sanders
Forecasting fundamentals / / Nada R. Sanders
Autore Sanders Nada R.
Edizione [First edition.]
Pubbl/distr/stampa New York, New York (222 East 46th Street, New York, NY 10017) : , : Business Expert Press, , 2017
Descrizione fisica 1 online resource (126 pages)
Disciplina 658.40355
Collana Supply and operations management collection
Soggetto topico Business forecasting
Soggetto non controllato causal methods
collaborative forecasting
forecasting
forecast accuracy measures
forecasting analysis
forecasting in business
forecasting methods
forecasting process
forecasting technology
judgmental forecasting
time-series forecasting
ISBN 1-60649-871-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Section I. Forecasting basics -- 1. Forecasting in business -- 2. The forecasting process -- Section II. Measuring forecast accuracy -- 3. Forecast accuracy measures -- Section III. Basics of forecasting methods -- 4. Categories of forecasting methods -- 5. Judgmental forecasting models -- 6. Statistical forecasting models -- Section IV. Forecasting in the business environment -- 7. Technology in forecasting -- 8. Managing the forecasting process -- Notes -- References -- Index.
Record Nr. UNINA-9910809870603321
Sanders Nada R.  
New York, New York (222 East 46th Street, New York, NY 10017) : , : Business Expert Press, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Health and Public Health Applications for Decision Support Using Machine Learning
Health and Public Health Applications for Decision Support Using Machine Learning
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2023
Descrizione fisica 1 online resource (214 p.)
Soggetto non controllato action units
adult-onset dementia
Alzheimer's disease
artificial intelligence
artificial neural network
atherosclerosis
audio visual
blood glucose
Cardiac health
ChemProt
colonies
comparison between manual and automated image segmentation
computerized diagnostic systems
convolutional neural network
COVID-19
COVID-19 detection
COVID-19 severity assessment
CPR (chemical-protein relation)
CVD classification
data selection
DDI (drug-drug interaction)
deep learning
deep neural network
diabetes
discrimination
Doppler ultrasound
ECG
emotion
ensemble learning
gait
GAT (graph-attention network)
group-based trajectory modeling
hemodynamic modeling
image processing
infected lung segmentation
internal carotid artery
largest Lyapunov exponent (LyE)
machine learning
machine-learning models
magnetic resonance imaging
Measurement uncertainty
Monte Carlo method
movement synergy
n/a
neural networks
neuromuscular control
overground walking
petri-plates
pretrained model
principal component analysis (PCA)
quantification of lung disease severity
relation extraction
risk assessment tool
RNN-LSTM
screening strategy
self-attention
signal processing
speech
stress
stroke
subclinical renal damage
T5 (text-to-text transfer transformer)
time-series forecasting
transfer learning
transformer
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910743269303321
MDPI - Multidisciplinary Digital Publishing Institute, 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui