UAVs for Vegetation Monitoring
| UAVs for Vegetation Monitoring |
| Autore | de Castro Megías Ana |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (452 p.) |
| Soggetto topico | Research & information: general |
| Soggetto non controllato |
Acacia
agro-environmental measures artificial intelligence artificial neural network banana broad-sense heritability canopy cover canopy height century-old biochar chlorophyll content CIELab classification close remote sensing CNN container-grown contextual spatial domain/resolution convolution neural network cotton root rot crop canopy crop disease crop mapping crop monitoring curve fitting data aggregation deep learning detection performance disease detection disease diagnosis disease monitoring drone drought tolerance eddy covariance (EC) evapotranspiration (ET) Faster RCNN flight altitude forage grass forest Fusarium wilt Glycine max GRAPEX growth model high throughput field phenotyping HSV hyperspectral image analysis image segmentation Inception v2 individual plant segmentation Indonesia inference time land cover least squares support vector machine machine learning maize tassel method comparison MobileNet v2 multiple linear regression multiscale textures multispectral multispectral image multispectral imagery multispectral remote sensing NDVI neural network nitrogen stress nutrient deficiency oil palm olive groves operating parameters ornamental patch-based CNN phenotyping gap plant detection plant nitrogen estimation plant segmentation plant trails plant-by-plant plant-level precision agriculture purple rapeseed leaves random forest red-edge spectra remote sensing remote sensing technique RGB RGB camera RGB imagery semantic segmentation single-plant solar zenith angle southern Spain spatial resolution SSD sUAS support vector machine tassel branch number texture thermal thermal camera time of day transfer learning transpiration tropics Two Source Energy Balance model (TSEB) U-Net UAS UAV UAV digital images UAV hyperspectral UAV remote sensing unmanned aerial vehicle variable importance vegetation cover vegetation ground cover vegetation index vegetation indices VGG16 visual recognition water stress weed detection wheat yellow rust winter wheat biomass |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557661103321 |
de Castro Megías Ana
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Ultrasound Elastography / Christoph F. Dietrich
| Ultrasound Elastography / Christoph F. Dietrich |
| Autore | Dietrich Christoph F |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (144 p.) |
| Soggetto topico | Medicine and Nursing |
| Soggetto non controllato |
ultrasonography
elastography anti-HBV therapy pediatric WFUMB measurement variability tendon stiffness pancreas patellar positions point of care ultrasound time of day chronic hepatitis B quantification chronic hepatitis C EFSUMB stiffness liver cirrhosis liver fibrosis computer-aided diagnosis (CAD) guideline liver stiffness Achilles tendon bending energy ultrasound elastography acoustic radiation force impulse tendinopathy texture analysis power spectrum magnetic resonance imaging strain ratio thyroid cancer prior activity direct acting antivirals strain quantification patellar tendon shear wave elastography (SWE) cine-tagging cirrhosis health care shear wave elastography Crohn’s disease contrast enhanced ultrasound HCV core antigen shear modulus therapy ultrasound supersonic shear imaging carcinoma quantitative leg dominance viral hepatitis C strain elastography endoscopic ultrasound (EUS) |
| ISBN |
9783038979111
3038979112 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346685303321 |
Dietrich Christoph F
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||