Carbon-Based Polymer Nanocomposites for High-Performance Applications |
Autore | Díez-Pascual Ana |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (256 p.) |
Soggetto topico | Technology: general issues |
Soggetto non controllato |
multi walled carbon nanotubes
polyacrylonitrile nascent fiber thermal properties morphological structure nanocomposites graphene melt processing mechanical properties electrical conductivity electrostatic spraying multi-walled carbon nanotubes waterborne polyurethane coating dispersity surface hardness wear rate friction coefficient in-mold decoration injection molding microcellular injection molding surface quality warpage multiwalled carbon nanotube hyaluronic acid microfibers wet-spinning microstructures tensile properties Ag CNT flexible supercapacitor electrode polymer conductive film cellulose acetate membrane PANI graphene oxide hexamethylene diisocyanate nanocomposite thermal stability polydiphenylamine-2-carboxylic acid single-walled carbon nanotubes conjugated polymers in situ oxidative polymerization hybrid nanocomposites polypropylene carbon nanotube titanium dioxide reduced graphene oxide polyurethane foam flexible electronics pressure sensing polyethyleneimine thermoelectric properties carrier type Paal-Knorr reaction polyketone carbon nanotubes Diels-Alder click-chemistry hydrogen bonding self-healing re-workability recycling Joule heating flexible electrode cross-linked acrylamide/alginate tensile strength impedance spectroscopy polymer electrolyte Li-ion micro-batteries flexible anode pre-lithiation carbon-based polymer nanocomposite energy storage fuel cell electrochemical devices |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910674028303321 |
Díez-Pascual Ana | ||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
New Advances in High-Entropy Alloys |
Autore | Zhang Yong |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
Descrizione fisica | 1 electronic resource (652 p.) |
Soggetto topico | Research & information: general |
Soggetto non controllato |
high-entropy alloys
alloys design lightweight alloys high entropy alloys elemental addition annealing treatment magnetic property microhardness in situ X-ray diffraction grain refinement thermoelectric properties scandium effect HEA high-entropy alloy CCA compositionally complex alloy phase composition microstructure wear behaviour metal matrix composites mechanical properties high-entropy films phase structures hardness solid-solution interstitial phase transmission electron microscopy compositionally complex alloys CrFeCoNi(Nb,Mo) corrosion sulfuric acid sodium chloride entropy multicomponent differential scanning calorimetry (DSC) specific heat stacking-fault energy density functional theory nanoscaled high-entropy alloys nanodisturbances phase transformations atomic-scale unstable mechanical alloying spark plasma sintering nanoprecipitates annealing phase constituent ion irradiation hardening behavior volume swelling medium entropy alloy high-pressure torsion partial recrystallization tensile strength high-entropy alloys (HEAs) phase constitution magnetic properties Curie temperature phase transition precipitation strengthening coherent microstructure conventional alloys nanocrystalline materials high entropy alloy sputtering deformation and fracture strain rate sensitivity liquid phase separation immiscible alloys HEAs multicomponent alloys miscibility gaps multi-principal element alloys MPEAs complex concentrated alloys CCAs electron microscopy plasticity methods plasticity serration behavior alloy design structural metals CALPHAD solid-solution alloys lattice distortion phase transformation (CoCrFeNi)100−xMox alloys corrosion behavior gamma double prime nanoparticles elemental partitioning atom probe tomography first-principles calculations bcc phase stability composition scanning laser cladding high-entropy alloy coating AZ91D magnesium alloy wear kinetics deformation thermal expansion diamond composite powder metallurgy additive manufacturing low-activation high-entropy alloys (HEAs) high-temperature structural alloys microstructures compressive properties heat-softening resistance tensile creep behavior microstructural evolution creep mechanism first-principles calculation maximum entropy elastic property mechanical property recrystallization laser metal deposition elemental powder graded material refractory high-entropy alloys elevated-temperature yield strength solid solution strengthening effect bulk metallic glass complex stress field shear band flow serration deformation mechanism ab initio configuration entropy matrix formulation cluster expansion cluster variation method monte carlo thermodynamic integration (AlCrTiZrV)-Six-N films nanocomposite structure refractory high entropy alloys medium entropy alloys, mechanical properties thin films deformation behaviors nanocrystalline coating interface mechanical characterization high pressure polymorphic transition solidification eutectic dendrites hierarchical nanotwins precipitation kinetics strengthening mechanisms elongation prediction welding Hall–Petch (H–P) effect lattice constants high-entropy ceramic solid-state diffusion phase evolution mechanical behaviors high-entropy film low-activation alloys |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557430203321 |
Zhang Yong | ||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Quantum Transport in Mesoscopic Systems |
Autore | Sánchez David |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
Descrizione fisica | 1 electronic resource (426 p.) |
Soggetto topico | Technology: general issues |
Soggetto non controllato |
quantum transport
quantum interference shot noise persistent current mesoscale and nanoscale physics Complementary Metal Oxide Semiconductor (CMOS) technology electron quantum optics photo-assisted noise charge and heat fluctuations time-dependent transport electron–photon coupling open quantum systems phonon transport nanostructured materials green’s functions density-functional tight binding Landauer approach, time-dependent transport graphene nanoribbons nonequilibrium Green’s function electronic transport thermal transport strongly correlated systems Landauer-Büttiker formalism Boltzmann transport equation time-dependent density functional theory electron–phonon coupling molecular junctions thermoelectric properties electron–vibration interactions electron–electron interactions thermoelectricity heat engines mesoscopic physics fluctuations thermodynamic uncertainty relations quantum thermodynamics steady-state dynamics nonlinear transport adiabatic quantum motors adiabatic quantum pumps quantum heat engines quantum refrigerators transport through quantum dots spin pump spin-orbit interaction quantum adiabatic pump interferometer geometric phase nonadiabaticity quantum heat pumping spin pumping relaxation time evolution quantum information entropy production Renyi entropy superconducting proximity effect Kondo effect spin polarization Anreev reflection conditional states conditional wavefunction Markovian and Non-Markovian dynamics stochastic Schrödinger equation quantum electron transport quantum dots fluctuation–dissipation theorem Onsager relations dynamics of strongly correlated quantum systems quantum capacitor local fermi liquids kondo effect coulomb blockade mesoscopic systems nanophysics quantum noise quantum pumping thermoelectrics heat transport |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557142403321 |
Sánchez David | ||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|