Advances in Wood Composites
| Advances in Wood Composites |
| Autore | Papadopoulos Antonios N |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (210 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
Abaqus
acetic anhydride activation volume adhesive penetration alder plywood aquacultural bamboo bending strength biorefinery lignin buckling carbothermal reduction cellulose ceramic chemical modification chemical structure coating amount color composite creep behavior crystallinity dimensional stability dynamic thermodynamic finite element analysis formaldehyde emissions graphene nano-platelets HDPE high-density polyethylene film hydrophobicity mechanical and physical properties mechanical properties mechanical property methyl methacrylate modulus of elasticity in bending n/a nanocompounds nanowollastonite oak (Quercus alba L.) oriented strand lumber (OSL) particleboard properties plastic polymer-triticale boards polyurethane-acrylate rapid formaldehyde release sepiolite shear strength silicon carbide sol-gel process Southwell's method stepped isostress method straw structural analysis surface properties sustainable adhesives thermal modification thermal property thermoplastic polymers thickness swelling tunnel-structured UF resin VOCs water absorption water-based UV curing coating wood wood adhesive wood panels wood plastic composite wood-inorganic composites WPC |
| ISBN | 3-03928-585-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910404087703321 |
Papadopoulos Antonios N
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Environment-Friendly Construction Materials: Volume 1 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
| Environment-Friendly Construction Materials: Volume 1 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao |
| Autore | Hoff Inge |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (280 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
fluorescence spectrum
microstructure regeneration sensitivity analysis asphalt mixes limestone aggregates bio-oil plateau value of dissipated strain energy ratio diatomite water-leaching pretreatment fatigue performance ultra-thin wearing course recycling aggregate design optimization induction heating vibration noise consumption bitumen relaxation viscous-elastic temperature field evaluation healing agents transmittance Ca-alginate microcapsules artificially aged asphalt mixture sequencing batch Chlorella reactor waste concrete plant ash lixivium steel fiber ultra-high performance concrete titanate coupling agent SEM self-healing physical properties porous pumice thermal–mechanical properties aggregate morphology asphalt mortar adhesion energy styrene–butadiene–styrene (SBS) modified bitumen water solute exposure emulsified asphalt demulsification speed mineral-asphalt mixtures aging processes phase change materials surface texture long-term drying shrinkage contact angle aging depth asphalt calcium alginate capsules nitrogen and phosphorus removal micro-morphology rice husk ash low-temperature cement hydrophobic nanosilica asphalt mixture thickness combinations layered double hydroxide initial self-healing temperature environmentally friendly construction materials epoxidized soybean oil limestone chemical evolutions temperature sensitivity characteristics micro-surfacing cement emulsified asphalt mixture dynamic characteristics high-strength concrete flame retardant durability creep damping damage constitutive model Ultra-High Performance Concrete (UHPC) granite aggregate diatomite-modified asphalt mixture healing model asphalt combustion freeze-thaw cycle SBS-modified bitumen workability graphene flow behavior index fluidity parametrization fatigue property rankinite railway application crystallization sensitivity aqueous solute compositions pozzolanic reaction self-healing asphalt recycled material artificial neural network rheological properties molecular dynamic simulation building envelopes aluminum hydroxide crumb rubber optimization viscoelasticity building energy conservation diffusing anti-rutting agent molecular bridge engineered cementitious composites (ECC) pavement performance morphology colloidal structure hydrophilic nanosilica construction materials road engineering laboratory evaluation rejuvenator fatigue equation aggregates three-point bending fatigue test energy-based approach aggregate from sanitary ceramic wastes polyacrylic acid mastic CO2 specific surface area aggregate image measurement system solubilizer flexibility simplex lattice design SBS/CRP-modified bitumen water stability fatigue life rejuvenating systems skid-resistance reclaimed asphalt pavement rheology hydration characteristic surface energy modified asphalt materials asphalt pavement stripping test SOD tensile stresses ultraviolet radiation basalt fiber “blue-shift” polyvinyl alcohol sanitary ceramics dynamic moduli aggregate characteristics compound modify expanded graphite steel slag induced healing thermal property effective heating depth dissipated strain energy MDA mechanical behavior plateau value of permanent deformation ratio long-term field service crack healing desulphurization gypsum residues pavement failure rejuvenation interfacial transition zone combination polyethylene glycol adsorption tensile strains cold recycled asphalt mixture resistance to deformations asphalt-aggregate adhesion viscoelastic properties damage evolution carbonation microwave heating amorphous silica high-modulus asphalt mixture (HMAM) hot mix asphalt containing recycled concrete aggregate microfluidic dynamic responses concrete asphalt mastic crumb rubber powder response surface methodology nanomaterial self-compacting concrete (SCC) rutting factor X-ray computed tomography fiber modification overlay tester rubber modified asphalt ageing aged bitumen aged asphalt recycling damage characteristics dynamic tests permeation ageing resistance |
| ISBN |
9783039210138
3039210130 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346838003321 |
Hoff Inge
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Environment-Friendly Construction Materials: Volume 2 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
| Environment-Friendly Construction Materials: Volume 2 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao |
| Autore | Hoff Inge |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (256 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
fluorescence spectrum
microstructure regeneration sensitivity analysis asphalt mixes limestone aggregates bio-oil plateau value of dissipated strain energy ratio diatomite water-leaching pretreatment fatigue performance ultra-thin wearing course recycling aggregate design optimization induction heating vibration noise consumption bitumen relaxation viscous-elastic temperature field evaluation healing agents transmittance Ca-alginate microcapsules artificially aged asphalt mixture sequencing batch Chlorella reactor waste concrete plant ash lixivium steel fiber ultra-high performance concrete titanate coupling agent SEM self-healing physical properties porous pumice thermal–mechanical properties aggregate morphology asphalt mortar adhesion energy styrene–butadiene–styrene (SBS) modified bitumen water solute exposure emulsified asphalt demulsification speed mineral-asphalt mixtures aging processes phase change materials surface texture long-term drying shrinkage contact angle aging depth asphalt calcium alginate capsules nitrogen and phosphorus removal micro-morphology rice husk ash low-temperature cement hydrophobic nanosilica asphalt mixture thickness combinations layered double hydroxide initial self-healing temperature environmentally friendly construction materials epoxidized soybean oil limestone chemical evolutions temperature sensitivity characteristics micro-surfacing cement emulsified asphalt mixture dynamic characteristics high-strength concrete flame retardant durability creep damping damage constitutive model Ultra-High Performance Concrete (UHPC) granite aggregate diatomite-modified asphalt mixture healing model asphalt combustion freeze-thaw cycle SBS-modified bitumen workability graphene flow behavior index fluidity parametrization fatigue property rankinite railway application crystallization sensitivity aqueous solute compositions pozzolanic reaction self-healing asphalt recycled material artificial neural network rheological properties molecular dynamic simulation building envelopes aluminum hydroxide crumb rubber optimization viscoelasticity building energy conservation diffusing anti-rutting agent molecular bridge engineered cementitious composites (ECC) pavement performance morphology colloidal structure hydrophilic nanosilica construction materials road engineering laboratory evaluation rejuvenator fatigue equation aggregates three-point bending fatigue test energy-based approach aggregate from sanitary ceramic wastes polyacrylic acid mastic CO2 specific surface area aggregate image measurement system solubilizer flexibility simplex lattice design SBS/CRP-modified bitumen water stability fatigue life rejuvenating systems skid-resistance reclaimed asphalt pavement rheology hydration characteristic surface energy modified asphalt materials asphalt pavement stripping test SOD tensile stresses ultraviolet radiation basalt fiber “blue-shift” polyvinyl alcohol sanitary ceramics dynamic moduli aggregate characteristics compound modify expanded graphite steel slag induced healing thermal property effective heating depth dissipated strain energy MDA mechanical behavior plateau value of permanent deformation ratio long-term field service crack healing desulphurization gypsum residues pavement failure rejuvenation interfacial transition zone combination polyethylene glycol adsorption tensile strains cold recycled asphalt mixture resistance to deformations asphalt-aggregate adhesion viscoelastic properties damage evolution carbonation microwave heating amorphous silica high-modulus asphalt mixture (HMAM) hot mix asphalt containing recycled concrete aggregate microfluidic dynamic responses concrete asphalt mastic crumb rubber powder response surface methodology nanomaterial self-compacting concrete (SCC) rutting factor X-ray computed tomography fiber modification overlay tester rubber modified asphalt ageing aged bitumen aged asphalt recycling damage characteristics dynamic tests permeation ageing resistance |
| ISBN |
9783039210152
3039210157 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346837903321 |
Hoff Inge
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Environment-Friendly Construction Materials: Volume 3 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
| Environment-Friendly Construction Materials: Volume 3 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao |
| Autore | Hoff Inge |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (270 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
fluorescence spectrum
microstructure regeneration sensitivity analysis asphalt mixes limestone aggregates bio-oil plateau value of dissipated strain energy ratio diatomite water-leaching pretreatment fatigue performance ultra-thin wearing course recycling aggregate design optimization induction heating vibration noise consumption bitumen relaxation viscous-elastic temperature field evaluation healing agents transmittance Ca-alginate microcapsules artificially aged asphalt mixture sequencing batch Chlorella reactor waste concrete plant ash lixivium steel fiber ultra-high performance concrete titanate coupling agent SEM self-healing physical properties porous pumice thermal–mechanical properties aggregate morphology asphalt mortar adhesion energy styrene–butadiene–styrene (SBS) modified bitumen water solute exposure emulsified asphalt demulsification speed mineral-asphalt mixtures aging processes phase change materials surface texture long-term drying shrinkage contact angle aging depth asphalt calcium alginate capsules nitrogen and phosphorus removal micro-morphology rice husk ash low-temperature cement hydrophobic nanosilica asphalt mixture thickness combinations layered double hydroxide initial self-healing temperature environmentally friendly construction materials epoxidized soybean oil limestone chemical evolutions temperature sensitivity characteristics micro-surfacing cement emulsified asphalt mixture dynamic characteristics high-strength concrete flame retardant durability creep damping damage constitutive model Ultra-High Performance Concrete (UHPC) granite aggregate diatomite-modified asphalt mixture healing model asphalt combustion freeze-thaw cycle SBS-modified bitumen workability graphene flow behavior index fluidity parametrization fatigue property rankinite railway application crystallization sensitivity aqueous solute compositions pozzolanic reaction self-healing asphalt recycled material artificial neural network rheological properties molecular dynamic simulation building envelopes aluminum hydroxide crumb rubber optimization viscoelasticity building energy conservation diffusing anti-rutting agent molecular bridge engineered cementitious composites (ECC) pavement performance morphology colloidal structure hydrophilic nanosilica construction materials road engineering laboratory evaluation rejuvenator fatigue equation aggregates three-point bending fatigue test energy-based approach aggregate from sanitary ceramic wastes polyacrylic acid mastic CO2 specific surface area aggregate image measurement system solubilizer flexibility simplex lattice design SBS/CRP-modified bitumen water stability fatigue life rejuvenating systems skid-resistance reclaimed asphalt pavement rheology hydration characteristic surface energy modified asphalt materials asphalt pavement stripping test SOD tensile stresses ultraviolet radiation basalt fiber “blue-shift” polyvinyl alcohol sanitary ceramics dynamic moduli aggregate characteristics compound modify expanded graphite steel slag induced healing thermal property effective heating depth dissipated strain energy MDA mechanical behavior plateau value of permanent deformation ratio long-term field service crack healing desulphurization gypsum residues pavement failure rejuvenation interfacial transition zone combination polyethylene glycol adsorption tensile strains cold recycled asphalt mixture resistance to deformations asphalt-aggregate adhesion viscoelastic properties damage evolution carbonation microwave heating amorphous silica high-modulus asphalt mixture (HMAM) hot mix asphalt containing recycled concrete aggregate microfluidic dynamic responses concrete asphalt mastic crumb rubber powder response surface methodology nanomaterial self-compacting concrete (SCC) rutting factor X-ray computed tomography fiber modification overlay tester rubber modified asphalt ageing aged bitumen aged asphalt recycling damage characteristics dynamic tests permeation ageing resistance |
| ISBN |
9783039210176
3039210173 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346837803321 |
Hoff Inge
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Innovative Composite Materials for Sound Absorption and Insulation
| Innovative Composite Materials for Sound Absorption and Insulation |
| Autore | Martellotta Francesco |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (188 p.) |
| Soggetto topico | Technology: general issues |
| Soggetto non controllato |
absorber array
acoustic properties agro-waste anisotropic materials biopolymers cigarette butts circular economy composite materials compressible constrained layer damping concrete diffuse field flame retardant graded properties hygrothermal performances impedance tube low frequency absorption molecular sieve pellets morphing structure n/a noise optimized absorption orthotropic panel perforated panel perforated plates with extended tubes periodic absorber phase change material polyurethane foam porous materials radiation efficiency recycling sandwich panel semi-active damping sound absorber sound absorption sound transmission loss sound-absorbing sound-reflecting sustainable material sustainable materials textile waste thermal property transmission loss variability analysis wavenumber analysis wood plastic composite |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557370903321 |
Martellotta Francesco
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Process-Structure-Properties in Polymer Additive Manufacturing
| Process-Structure-Properties in Polymer Additive Manufacturing |
| Autore | Sing Swee Leong |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (218 p.) |
| Soggetto topico | Technology: general issues |
| Soggetto non controllato |
3D printing
3D scanning additive manufacturing barium titanate bike saddle bioinspired bisphenol CFRP crashworthiness crystallization kinetics dynamic compression electrospinning energy absorption ferrite composites fibre reinforcement field structuring fused deposition modeling fused filament fabrication Fused Filament Fabrication geometrical errors helicoidal structure impact resistance inkjet printing Ls Dyna machine capability magnetic composites material extrusion material jetting mechanical properties melt polycondensation meniscus implant microstructure control microstructure mode I fracture toughness n/a nanocomposites nanomaterial ink optimization piezoelectric PLA mold poly(ethylene terephthalate) polyamide and Alumide polymer polymer resin polymers printed electronics process capability PVDF quality rheological modifications selective laser sintering silicone Simplified Rubber Material statistical process control thermal property thermoplastic polyurethane Three Point Bending test tolerance grade turbomachinery vacuum bag technology variability |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557788103321 |
Sing Swee Leong
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||