top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Wood Composites
Advances in Wood Composites
Autore Papadopoulos Antonios N
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (210 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato Abaqus
acetic anhydride
activation volume
adhesive penetration
alder plywood
aquacultural
bamboo
bending strength
biorefinery lignin
buckling
carbothermal reduction
cellulose
ceramic
chemical modification
chemical structure
coating amount
color
composite
creep behavior
crystallinity
dimensional stability
dynamic thermodynamic
finite element analysis
formaldehyde emissions
graphene nano-platelets
HDPE
high-density polyethylene film
hydrophobicity
mechanical and physical properties
mechanical properties
mechanical property
methyl methacrylate
modulus of elasticity in bending
n/a
nanocompounds
nanowollastonite
oak (Quercus alba L.)
oriented strand lumber (OSL)
particleboard properties
plastic
polymer-triticale boards
polyurethane-acrylate
rapid formaldehyde release
sepiolite
shear strength
silicon carbide
sol-gel process
Southwell's method
stepped isostress method
straw
structural analysis
surface properties
sustainable adhesives
thermal modification
thermal property
thermoplastic polymers
thickness swelling
tunnel-structured
UF resin
VOCs
water absorption
water-based UV curing coating
wood
wood adhesive
wood panels
wood plastic composite
wood-inorganic composites
WPC
ISBN 3-03928-585-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404087703321
Papadopoulos Antonios N  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Environment-Friendly Construction Materials: Volume 1 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
Environment-Friendly Construction Materials: Volume 1 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
Autore Hoff Inge
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (280 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato fluorescence spectrum
microstructure
regeneration
sensitivity analysis
asphalt mixes
limestone aggregates
bio-oil
plateau value of dissipated strain energy ratio
diatomite
water-leaching pretreatment
fatigue performance
ultra-thin wearing course
recycling aggregate
design optimization
induction heating
vibration noise consumption
bitumen
relaxation
viscous-elastic temperature
field evaluation
healing agents
transmittance
Ca-alginate microcapsules
artificially aged asphalt mixture
sequencing batch Chlorella reactor
waste concrete
plant ash lixivium
steel fiber
ultra-high performance concrete
titanate coupling agent
SEM
self-healing
physical properties
porous pumice
thermal–mechanical properties
aggregate morphology
asphalt mortar
adhesion energy
styrene–butadiene–styrene (SBS) modified bitumen
water solute exposure
emulsified asphalt
demulsification speed
mineral-asphalt mixtures
aging processes
phase change materials
surface texture
long-term drying shrinkage
contact angle
aging depth
asphalt
calcium alginate capsules
nitrogen and phosphorus removal
micro-morphology
rice husk ash
low-temperature
cement
hydrophobic nanosilica
asphalt mixture
thickness combinations
layered double hydroxide
initial self-healing temperature
environmentally friendly construction materials
epoxidized soybean oil
limestone
chemical evolutions
temperature sensitivity characteristics
micro-surfacing
cement emulsified asphalt mixture
dynamic characteristics
high-strength concrete
flame retardant
durability
creep
damping
damage constitutive model
Ultra-High Performance Concrete (UHPC)
granite aggregate
diatomite-modified asphalt mixture
healing model
asphalt combustion
freeze-thaw cycle
SBS-modified bitumen
workability
graphene
flow behavior index
fluidity
parametrization
fatigue property
rankinite
railway application
crystallization sensitivity
aqueous solute compositions
pozzolanic reaction
self-healing asphalt
recycled material
artificial neural network
rheological properties
molecular dynamic simulation
building envelopes
aluminum hydroxide
crumb rubber
optimization
viscoelasticity
building energy conservation
diffusing
anti-rutting agent
molecular bridge
engineered cementitious composites (ECC)
pavement performance
morphology
colloidal structure
hydrophilic nanosilica
construction materials
road engineering
laboratory evaluation
rejuvenator
fatigue equation
aggregates
three-point bending fatigue test
energy-based approach
aggregate from sanitary ceramic wastes
polyacrylic acid
mastic
CO2
specific surface area
aggregate image measurement system
solubilizer
flexibility
simplex lattice design
SBS/CRP-modified bitumen
water stability
fatigue life
rejuvenating systems
skid-resistance
reclaimed asphalt pavement
rheology
hydration characteristic
surface energy
modified asphalt materials
asphalt pavement
stripping test
SOD
tensile stresses
ultraviolet radiation
basalt fiber
“blue-shift”
polyvinyl alcohol
sanitary ceramics
dynamic moduli
aggregate characteristics
compound modify
expanded graphite
steel slag
induced healing
thermal property
effective heating depth
dissipated strain energy
MDA
mechanical behavior
plateau value of permanent deformation ratio
long-term field service
crack healing
desulphurization gypsum residues
pavement failure
rejuvenation
interfacial transition zone
combination
polyethylene glycol
adsorption
tensile strains
cold recycled asphalt mixture
resistance to deformations
asphalt-aggregate adhesion
viscoelastic properties
damage evolution
carbonation
microwave heating
amorphous silica
high-modulus asphalt mixture (HMAM)
hot mix asphalt containing recycled concrete aggregate
microfluidic
dynamic responses
concrete
asphalt mastic
crumb rubber powder
response surface methodology
nanomaterial
self-compacting concrete (SCC)
rutting factor
X-ray computed tomography
fiber modification
overlay tester
rubber modified asphalt
ageing
aged bitumen
aged asphalt
recycling
damage characteristics
dynamic tests
permeation
ageing resistance
ISBN 9783039210138
3039210130
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346838003321
Hoff Inge  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Environment-Friendly Construction Materials: Volume 2 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
Environment-Friendly Construction Materials: Volume 2 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
Autore Hoff Inge
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (256 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato fluorescence spectrum
microstructure
regeneration
sensitivity analysis
asphalt mixes
limestone aggregates
bio-oil
plateau value of dissipated strain energy ratio
diatomite
water-leaching pretreatment
fatigue performance
ultra-thin wearing course
recycling aggregate
design optimization
induction heating
vibration noise consumption
bitumen
relaxation
viscous-elastic temperature
field evaluation
healing agents
transmittance
Ca-alginate microcapsules
artificially aged asphalt mixture
sequencing batch Chlorella reactor
waste concrete
plant ash lixivium
steel fiber
ultra-high performance concrete
titanate coupling agent
SEM
self-healing
physical properties
porous pumice
thermal–mechanical properties
aggregate morphology
asphalt mortar
adhesion energy
styrene–butadiene–styrene (SBS) modified bitumen
water solute exposure
emulsified asphalt
demulsification speed
mineral-asphalt mixtures
aging processes
phase change materials
surface texture
long-term drying shrinkage
contact angle
aging depth
asphalt
calcium alginate capsules
nitrogen and phosphorus removal
micro-morphology
rice husk ash
low-temperature
cement
hydrophobic nanosilica
asphalt mixture
thickness combinations
layered double hydroxide
initial self-healing temperature
environmentally friendly construction materials
epoxidized soybean oil
limestone
chemical evolutions
temperature sensitivity characteristics
micro-surfacing
cement emulsified asphalt mixture
dynamic characteristics
high-strength concrete
flame retardant
durability
creep
damping
damage constitutive model
Ultra-High Performance Concrete (UHPC)
granite aggregate
diatomite-modified asphalt mixture
healing model
asphalt combustion
freeze-thaw cycle
SBS-modified bitumen
workability
graphene
flow behavior index
fluidity
parametrization
fatigue property
rankinite
railway application
crystallization sensitivity
aqueous solute compositions
pozzolanic reaction
self-healing asphalt
recycled material
artificial neural network
rheological properties
molecular dynamic simulation
building envelopes
aluminum hydroxide
crumb rubber
optimization
viscoelasticity
building energy conservation
diffusing
anti-rutting agent
molecular bridge
engineered cementitious composites (ECC)
pavement performance
morphology
colloidal structure
hydrophilic nanosilica
construction materials
road engineering
laboratory evaluation
rejuvenator
fatigue equation
aggregates
three-point bending fatigue test
energy-based approach
aggregate from sanitary ceramic wastes
polyacrylic acid
mastic
CO2
specific surface area
aggregate image measurement system
solubilizer
flexibility
simplex lattice design
SBS/CRP-modified bitumen
water stability
fatigue life
rejuvenating systems
skid-resistance
reclaimed asphalt pavement
rheology
hydration characteristic
surface energy
modified asphalt materials
asphalt pavement
stripping test
SOD
tensile stresses
ultraviolet radiation
basalt fiber
“blue-shift”
polyvinyl alcohol
sanitary ceramics
dynamic moduli
aggregate characteristics
compound modify
expanded graphite
steel slag
induced healing
thermal property
effective heating depth
dissipated strain energy
MDA
mechanical behavior
plateau value of permanent deformation ratio
long-term field service
crack healing
desulphurization gypsum residues
pavement failure
rejuvenation
interfacial transition zone
combination
polyethylene glycol
adsorption
tensile strains
cold recycled asphalt mixture
resistance to deformations
asphalt-aggregate adhesion
viscoelastic properties
damage evolution
carbonation
microwave heating
amorphous silica
high-modulus asphalt mixture (HMAM)
hot mix asphalt containing recycled concrete aggregate
microfluidic
dynamic responses
concrete
asphalt mastic
crumb rubber powder
response surface methodology
nanomaterial
self-compacting concrete (SCC)
rutting factor
X-ray computed tomography
fiber modification
overlay tester
rubber modified asphalt
ageing
aged bitumen
aged asphalt
recycling
damage characteristics
dynamic tests
permeation
ageing resistance
ISBN 9783039210152
3039210157
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346837903321
Hoff Inge  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Environment-Friendly Construction Materials: Volume 3 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
Environment-Friendly Construction Materials: Volume 3 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
Autore Hoff Inge
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (270 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato fluorescence spectrum
microstructure
regeneration
sensitivity analysis
asphalt mixes
limestone aggregates
bio-oil
plateau value of dissipated strain energy ratio
diatomite
water-leaching pretreatment
fatigue performance
ultra-thin wearing course
recycling aggregate
design optimization
induction heating
vibration noise consumption
bitumen
relaxation
viscous-elastic temperature
field evaluation
healing agents
transmittance
Ca-alginate microcapsules
artificially aged asphalt mixture
sequencing batch Chlorella reactor
waste concrete
plant ash lixivium
steel fiber
ultra-high performance concrete
titanate coupling agent
SEM
self-healing
physical properties
porous pumice
thermal–mechanical properties
aggregate morphology
asphalt mortar
adhesion energy
styrene–butadiene–styrene (SBS) modified bitumen
water solute exposure
emulsified asphalt
demulsification speed
mineral-asphalt mixtures
aging processes
phase change materials
surface texture
long-term drying shrinkage
contact angle
aging depth
asphalt
calcium alginate capsules
nitrogen and phosphorus removal
micro-morphology
rice husk ash
low-temperature
cement
hydrophobic nanosilica
asphalt mixture
thickness combinations
layered double hydroxide
initial self-healing temperature
environmentally friendly construction materials
epoxidized soybean oil
limestone
chemical evolutions
temperature sensitivity characteristics
micro-surfacing
cement emulsified asphalt mixture
dynamic characteristics
high-strength concrete
flame retardant
durability
creep
damping
damage constitutive model
Ultra-High Performance Concrete (UHPC)
granite aggregate
diatomite-modified asphalt mixture
healing model
asphalt combustion
freeze-thaw cycle
SBS-modified bitumen
workability
graphene
flow behavior index
fluidity
parametrization
fatigue property
rankinite
railway application
crystallization sensitivity
aqueous solute compositions
pozzolanic reaction
self-healing asphalt
recycled material
artificial neural network
rheological properties
molecular dynamic simulation
building envelopes
aluminum hydroxide
crumb rubber
optimization
viscoelasticity
building energy conservation
diffusing
anti-rutting agent
molecular bridge
engineered cementitious composites (ECC)
pavement performance
morphology
colloidal structure
hydrophilic nanosilica
construction materials
road engineering
laboratory evaluation
rejuvenator
fatigue equation
aggregates
three-point bending fatigue test
energy-based approach
aggregate from sanitary ceramic wastes
polyacrylic acid
mastic
CO2
specific surface area
aggregate image measurement system
solubilizer
flexibility
simplex lattice design
SBS/CRP-modified bitumen
water stability
fatigue life
rejuvenating systems
skid-resistance
reclaimed asphalt pavement
rheology
hydration characteristic
surface energy
modified asphalt materials
asphalt pavement
stripping test
SOD
tensile stresses
ultraviolet radiation
basalt fiber
“blue-shift”
polyvinyl alcohol
sanitary ceramics
dynamic moduli
aggregate characteristics
compound modify
expanded graphite
steel slag
induced healing
thermal property
effective heating depth
dissipated strain energy
MDA
mechanical behavior
plateau value of permanent deformation ratio
long-term field service
crack healing
desulphurization gypsum residues
pavement failure
rejuvenation
interfacial transition zone
combination
polyethylene glycol
adsorption
tensile strains
cold recycled asphalt mixture
resistance to deformations
asphalt-aggregate adhesion
viscoelastic properties
damage evolution
carbonation
microwave heating
amorphous silica
high-modulus asphalt mixture (HMAM)
hot mix asphalt containing recycled concrete aggregate
microfluidic
dynamic responses
concrete
asphalt mastic
crumb rubber powder
response surface methodology
nanomaterial
self-compacting concrete (SCC)
rutting factor
X-ray computed tomography
fiber modification
overlay tester
rubber modified asphalt
ageing
aged bitumen
aged asphalt
recycling
damage characteristics
dynamic tests
permeation
ageing resistance
ISBN 9783039210176
3039210173
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346837803321
Hoff Inge  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Innovative Composite Materials for Sound Absorption and Insulation
Innovative Composite Materials for Sound Absorption and Insulation
Autore Martellotta Francesco
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (188 p.)
Soggetto topico Technology: general issues
Soggetto non controllato absorber array
acoustic properties
agro-waste
anisotropic materials
biopolymers
cigarette butts
circular economy
composite materials
compressible constrained layer damping
concrete
diffuse field
flame retardant
graded properties
hygrothermal performances
impedance tube
low frequency absorption
molecular sieve pellets
morphing structure
n/a
noise
optimized absorption
orthotropic panel
perforated panel
perforated plates with extended tubes
periodic absorber
phase change material
polyurethane foam
porous materials
radiation efficiency
recycling
sandwich panel
semi-active damping
sound absorber
sound absorption
sound transmission loss
sound-absorbing
sound-reflecting
sustainable material
sustainable materials
textile waste
thermal property
transmission loss
variability analysis
wavenumber analysis
wood plastic composite
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557370903321
Martellotta Francesco  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Process-Structure-Properties in Polymer Additive Manufacturing
Process-Structure-Properties in Polymer Additive Manufacturing
Autore Sing Swee Leong
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (218 p.)
Soggetto topico Technology: general issues
Soggetto non controllato 3D printing
3D scanning
additive manufacturing
barium titanate
bike saddle
bioinspired
bisphenol
CFRP
crashworthiness
crystallization kinetics
dynamic compression
electrospinning
energy absorption
ferrite composites
fibre reinforcement
field structuring
fused deposition modeling
fused filament fabrication
Fused Filament Fabrication
geometrical errors
helicoidal structure
impact resistance
inkjet printing
Ls Dyna
machine capability
magnetic composites
material extrusion
material jetting
mechanical properties
melt polycondensation
meniscus implant
microstructure control
microstructure
mode I fracture toughness
n/a
nanocomposites
nanomaterial ink
optimization
piezoelectric
PLA mold
poly(ethylene terephthalate)
polyamide and Alumide
polymer
polymer resin
polymers
printed electronics
process capability
PVDF
quality
rheological modifications
selective laser sintering
silicone
Simplified Rubber Material
statistical process control
thermal property
thermoplastic polyurethane
Three Point Bending test
tolerance grade
turbomachinery
vacuum bag technology
variability
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557788103321
Sing Swee Leong  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui