AI and Financial Markets |
Autore | Hamori Shigeyuki |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (230 p.) |
Soggetto topico | Economics, finance, business & management |
Soggetto non controllato |
algorithmic trading
Stop Loss Turtle ATR community finances fiscal flexibility individualized financial arrangements sustainable financial services price momentum hidden markov model asset allocation blockchain BlockCloud Artificial Intelligence consensus algorithms exchange rates fundamentals prediction random forest support vector machine neural network deep reinforcement learning financial market simulation agent based simulation artificial market simulation CAR regulation portfolio contract for difference CfD reinforcement learning RL neural networks long short-term memory LSTM Q-learning deep learning uncertainty economic policy text mining topic model yield curve term structure of interest rates machine learning autoencoder interpretability |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557584903321 |
Hamori Shigeyuki
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Bibliometric Studies and Worldwide Research Trends on Global Health |
Autore | Manzano Agugliaro Francisco |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (326 p.) |
Soggetto topico | Research & information: general |
Soggetto non controllato |
social networks
health young people bibliometric study scientometrics obesity interventions children youths pediatrics reclaimed water advanced oxidation process microorganisms concern emergent contaminant worldwide content analysis text mining diabetes QOL artificial intelligence machine learning bibliometric LDA HIV/AIDS quality of life global health public health scientometric study knowledge map visualization analysis CiteSpace COPD QoL medicinal plants drugs worldwide research bibliometrics traditional medicine asthma HRQoL Scival patents Spain Research and Development (R& D) social returns COVID-19 biomechanics musculoskeletal disorders RULA ergonomics applications climate change infectious diseases bibliometric analysis co-word analysis biclustering strategic diagram academic performance citation network motivation microplastics network analysis VOSviewer software research hotspots pulmonary disease musculoskeletal risks wastewater treatment |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557629603321 |
Manzano Agugliaro Francisco
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Big Data Analytics and Information Science for Business and Biomedical Applications |
Autore | Ahmed S. Ejaz |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (246 p.) |
Soggetto topico |
Humanities
Social interaction |
Soggetto non controllato |
high-dimensional
nonlocal prior strong selection consistency estimation consistency generalized linear models high dimensional predictors model selection stepwise regression deep learning financial time series causal and dilated convolutional neural networks nuisance post-selection inference missingness mechanism regularization asymptotic theory unconventional likelihood high dimensional time-series segmentation mixture regression sparse PCA entropy-based robust EM information complexity criteria high dimension multicategory classification DWD sparse group lasso L2-consistency proximal algorithm abdominal aortic aneurysm emulation Medicare data ensembling high-dimensional data Lasso elastic net penalty methods prediction random subspaces ant colony system bayesian spatial mixture model inverse problem nonparamteric boostrap EEG/MEG data feature representation feature fusion trend analysis text mining |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557614803321 |
Ahmed S. Ejaz
![]() |
||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational Methods for the Analysis of Genomic Data and Biological Processes |
Autore | Gómez Vela Francisco A |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
Descrizione fisica | 1 electronic resource (222 p.) |
Soggetto topico |
Research & information: general
Biology, life sciences |
Soggetto non controllato |
HIGD2A
cancer DNA methylation mRNA expression miRNA quercetin hypoxia eQTL CRISPR-Cas9 single-cell clone fine-mapping power RNA N6-methyladenosine site yeast genome methylation computational biology deep learning bioinformatics hepatocellular carcinoma transcriptomics proteomics bioinformatics analysis differentiation Gene Ontology Reactome Pathways gene-set enrichment meta-analysis transcription factor binding sites genomics chilling stress CBF DREB CAMTA1 pathway text mining infiltration tactics optimization algorithm classification clustering microarray ensembles machine learning infiltration computational intelligence gene co-expression network murine coronavirus viral infection immune response data mining systems biology obesity differential genes expression exercise high-fat diet pathways potential therapeutic targets DNA N6-methyladenine Chou's 5-steps rule Convolution Neural Network (CNN) Long Short-Term Memory (LSTM) machine-learning chromatin interactions prediction genome architecture |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557129603321 |
Gómez Vela Francisco A
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational Systems Biology of Pathogen-Host Interactions |
Autore | Reinhard Guthke |
Pubbl/distr/stampa | Frontiers Media SA, 2016 |
Descrizione fisica | 1 electronic resource (198 p.) |
Collana | Frontiers Research Topics |
Soggetto non controllato |
Image-based Systems Biology
Network Inference OMICS data Computational Biology bioinformatics protein-protein interaction text mining Constraint-based modeling gene regulatory network pathogen-host interaction |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910161648403321 |
Reinhard Guthke
![]() |
||
Frontiers Media SA, 2016 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan |
Autore | Attewell Paul A. <1949-> |
Pubbl/distr/stampa | Oakland, California : , : University of California Press, , 2015 |
Descrizione fisica | 1 online resource (265 p.) |
Disciplina | 006.3/12 |
Soggetto topico |
Social sciences - Data processing
Social sciences - Statistical methods Data mining |
Soggetto non controllato |
analyzing data
bayesian networks big data bootstrapping business analytics chaid classification and regression trees classification trees confusion matrix data analysis data mining data processing data scholarship data science hardware for data mining heteroscedasticity naive bayes partition trees permutation tests scholarly data social science social scientists software for data mining statistical methods statistical modeling studying data text mining vif regression weka |
ISBN |
0-520-28098-9
0-520-96059-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- CONTENTS -- ACKNOWLEDGMENTS -- 1. WHAT IS DATA MINING? -- 2. CONTRASTS WITH THE CONVENTIONAL STATISTICAL APPROACH -- 3. SOME GENERAL STRATEGIES USED IN DATA MINING -- 4. IMPORTANT STAGES IN A DATA MINING PROJECT -- 5. PREPARING TRAINING AND TEST DATASETS -- 6. VARIABLE SELECTION TOOLS -- 7. CREATING NEW VARIABLES -- 8. EXTRACTING VARIABLES -- 9. CLASSIFIERS -- 10. CLASSIFICATION TREES -- 11. NEURAL NETWORKS -- 12. CLUSTERING -- 13. LATENT CLASS ANALYSIS AND MIXTURE MODELS -- 14. ASSOCIATION RULES -- CONCLUSION. Where Next? -- BIBLIOGRAPHY -- NOTES -- INDEX |
Record Nr. | UNINA-9910788152303321 |
Attewell Paul A. <1949->
![]() |
||
Oakland, California : , : University of California Press, , 2015 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Data mining for the social sciences : an introduction / / Paul Attewell and David B. Monaghan |
Autore | Attewell Paul A. <1949-> |
Pubbl/distr/stampa | Oakland, California : , : University of California Press, , 2015 |
Descrizione fisica | 1 online resource (265 p.) |
Disciplina | 006.3/12 |
Soggetto topico |
Social sciences - Data processing
Social sciences - Statistical methods Data mining |
Soggetto non controllato |
analyzing data
bayesian networks big data bootstrapping business analytics chaid classification and regression trees classification trees confusion matrix data analysis data mining data processing data scholarship data science hardware for data mining heteroscedasticity naive bayes partition trees permutation tests scholarly data social science social scientists software for data mining statistical methods statistical modeling studying data text mining vif regression weka |
ISBN |
0-520-28098-9
0-520-96059-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- CONTENTS -- ACKNOWLEDGMENTS -- 1. WHAT IS DATA MINING? -- 2. CONTRASTS WITH THE CONVENTIONAL STATISTICAL APPROACH -- 3. SOME GENERAL STRATEGIES USED IN DATA MINING -- 4. IMPORTANT STAGES IN A DATA MINING PROJECT -- 5. PREPARING TRAINING AND TEST DATASETS -- 6. VARIABLE SELECTION TOOLS -- 7. CREATING NEW VARIABLES -- 8. EXTRACTING VARIABLES -- 9. CLASSIFIERS -- 10. CLASSIFICATION TREES -- 11. NEURAL NETWORKS -- 12. CLUSTERING -- 13. LATENT CLASS ANALYSIS AND MIXTURE MODELS -- 14. ASSOCIATION RULES -- CONCLUSION. Where Next? -- BIBLIOGRAPHY -- NOTES -- INDEX |
Record Nr. | UNINA-9910814373503321 |
Attewell Paul A. <1949->
![]() |
||
Oakland, California : , : University of California Press, , 2015 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Data Science and Knowledge Discovery |
Autore | Portela Filipe |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (254 p.) |
Soggetto topico |
Information technology industries
Computer science |
Soggetto non controllato |
crisis reporting
chatbots journalists news media COVID-19 textbook research digital humanities digital infrastructures data analysis content base image retrieval semantic information retrieval deep features multimedia document retrieval data science open government data governance and social institutions economic determinants of open data geoinformation technology fractal dimension territorial road network box-counting framework script Python ArcGIS internet of things LoRaWAN ICT The Things Network ESP32 microcontroller decision systems rule based systems databases rough sets prediction by partial matching spatio-temporal activity recognition smart homes artificial intelligence automation e-commerce machine learning big data customer relationship management (CRM) distracted driving driving behavior driving operation area data augmentation feature extraction authorship text mining attribution neural networks deep learning forensic intelligence dashboard WebGIS data analytics SARS-CoV-2 Big Data Web Intelligence media analytics social sciences humanities linked open data adaptation process interdisciplinary research media criticism classification information systems public health data mining ioCOVID19 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910576878103321 |
Portela Filipe
![]() |
||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Empirical Finance |
Autore | Hamori Shigeyuki |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
Descrizione fisica | 1 electronic resource (276 p.) |
Soggetto non controllato |
short-term forecasting
wavelet transform IPO volatility US dollar institutional investors’ shareholdings neural network financial market stress market microstructure text similarity TVP-VAR model Japanese yen convolutional neural networks global financial crisis deep neural network cross-correlation function boosting causality-in-variance flight to quality bagging earnings quality algorithmic trading stop loss statistical arbitrage ensemble learning liquidity risk premium gold return futures market take profit currency crisis spark spread city banks piecewise regression model financial and non-financial variables exports data mining latency crude oil futures prices forecasting random forests wholesale electricity SVM random forest bank credit deep learning Vietnam inertia MACD initial public offering text mining bankruptcy prediction exchange rate asset pricing model LSTM panel data model structural break credit risk housing and stock markets copula ARDL earnings manipulation machine learning natural gas housing price asymmetric dependence real estate development loans earnings management cointegration predictive accuracy robust regression quantile regression dependence structure housing loans price discovery utility of international currency ATR |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910346675203321 |
Hamori Shigeyuki
![]() |
||
MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Human and Animal Sensitivity : : How Stock-People and Consumer Perception Can Affect Animal Welfare / / Fabio Napolitano |
Autore | Napolitano Fabio |
Pubbl/distr/stampa | Basel, Switzerland : , : MDPI, , 2019 |
Descrizione fisica | 1 electronic resource (234 p.) |
Soggetto non controllato |
education
animal welfare young adult welfare stunning human health perception slaughter pig pigs children livestock laying hen racehorse welfare qualitative research free elicitation narrative interviews knowledge fear milk production ethical concerns food safety concerns agreement stakeholder perception castration sheep farmers farmer perception animal ethics goat benefit horse dairy buffalo animal attitudes turkey farm animal welfare (FAW) animal survey Animal welfare husbandry practices willingness to pay donkey avoidance distance training stockperson behaviour stockpeople attitudes farm animal welfare farm animals veterinary students broiler text mining religious slaughter profit consumer sheep egg farm Halal meat pain employee relations standards of care animal behavior consumer demand albumen corticosterone aggression technology transport test-retest reliability desensitization producer perspective economics pain perception Asia horse–human relationship lambs veterinary student human-animal relationship information citizen perception immunocastration perceived consumer effectiveness staff shortages |
ISBN |
9783039212620
3039212621 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910367568603321 |
Napolitano Fabio
![]() |
||
Basel, Switzerland : , : MDPI, , 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|