top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fréchet differentiability of Lipschitz functions and porous sets in Banach spaces [[electronic resource] /] / Joram Lindenstrauss, David Preiss, Jaroslav Tiser
Fréchet differentiability of Lipschitz functions and porous sets in Banach spaces [[electronic resource] /] / Joram Lindenstrauss, David Preiss, Jaroslav Tiser
Autore Lindenstrauss Joram <1936->
Edizione [Course Book]
Pubbl/distr/stampa Princeton, : Princeton University Press, 2012
Descrizione fisica 1 online resource (436 p.)
Disciplina 515/.88
Altri autori (Persone) PreissDavid
TišerJaroslav <1957->
Collana Annals of mathematics studies
Soggetto topico Banach spaces
Calculus of variations
Functional analysis
Soggetto non controllato Asplund space
Banach space
Borel sets
Euclidean space
Frechet differentiability
Fréchet derivative
Fréchet differentiability
Fréchet smooth norm
Gâteaux derivative
Gâteaux differentiability
Hilbert space
Lipschitz function
Lipschitz map
Radon-Nikodým property
asymptotic uniform smoothness
asymptotically smooth norm
asymptotically smooth space
bump
completeness
cone-monotone function
convex function
deformation
derivative
descriptive set theory
flat surface
higher dimensional space
infinite dimensional space
irregular behavior
irregularity point
linear operators
low Borel classes
lower semicontinuity
mean value estimate
modulus
multidimensional mean value
nonlinear functional analysis
nonseparable space
null sets
perturbation function
perturbation game
perturbation
porosity
porous sets
regular behavior
regular differentiability
regularity parameter
renorming
separable determination
separable dual
separable space
slice
smooth bump
subspace
tensor products
three-dimensional space
two-dimensional space
two-player game
variational principle
variational principles
Γ-null sets
ε-Fréchet derivative
ε-Fréchet differentiability
σ-porous sets
ISBN 1-283-37995-3
9786613379955
1-4008-4269-7
Classificazione SI 830
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Chapter One: Introduction -- Chapter Two: Gâteaux differentiability of Lipschitz functions -- Chapter Three: Smoothness, convexity, porosity, and separable determination -- Chapter Four: ε-Fréchet differentiability -- Chapter Five: Γ-null and Γn-null sets -- Chapter Six: Férchet differentiability except for Γ-null sets -- Chapter Seven: Variational principles -- Chapter Eight: Smoothness and asymptotic smoothness -- Chapter Nine: Preliminaries to main results -- Chapter Ten: Porosity, Γn- and Γ-null sets -- Chapter Eleven: Porosity and ε-Fréchet differentiability -- Chapter Twelve: Fréchet differentiability of real-valued functions -- Chapter Thirteen: Fréchet differentiability of vector-valued functions -- Chapter Fourteen: Unavoidable porous sets and nondifferentiable maps -- Chapter Fifteen: Asymptotic Fréchet differentiability -- Chapter Sixteen: Differentiability of Lipschitz maps on Hilbert spaces -- Bibliography -- Index -- Index of Notation
Record Nr. UNINA-9910789737103321
Lindenstrauss Joram <1936->  
Princeton, : Princeton University Press, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fréchet differentiability of Lipschitz functions and porous sets in Banach spaces / / Joram Lindenstrauss, David Preiss, Jaroslav Tiser
Fréchet differentiability of Lipschitz functions and porous sets in Banach spaces / / Joram Lindenstrauss, David Preiss, Jaroslav Tiser
Autore Lindenstrauss Joram <1936->
Edizione [Course Book]
Pubbl/distr/stampa Princeton, : Princeton University Press, 2012
Descrizione fisica 1 online resource (436 p.)
Disciplina 515/.88
Altri autori (Persone) PreissDavid
TišerJaroslav <1957->
Collana Annals of mathematics studies
Soggetto topico Banach spaces
Calculus of variations
Functional analysis
Soggetto non controllato Asplund space
Banach space
Borel sets
Euclidean space
Frechet differentiability
Fréchet derivative
Fréchet differentiability
Fréchet smooth norm
Gâteaux derivative
Gâteaux differentiability
Hilbert space
Lipschitz function
Lipschitz map
Radon-Nikodým property
asymptotic uniform smoothness
asymptotically smooth norm
asymptotically smooth space
bump
completeness
cone-monotone function
convex function
deformation
derivative
descriptive set theory
flat surface
higher dimensional space
infinite dimensional space
irregular behavior
irregularity point
linear operators
low Borel classes
lower semicontinuity
mean value estimate
modulus
multidimensional mean value
nonlinear functional analysis
nonseparable space
null sets
perturbation function
perturbation game
perturbation
porosity
porous sets
regular behavior
regular differentiability
regularity parameter
renorming
separable determination
separable dual
separable space
slice
smooth bump
subspace
tensor products
three-dimensional space
two-dimensional space
two-player game
variational principle
variational principles
Γ-null sets
ε-Fréchet derivative
ε-Fréchet differentiability
σ-porous sets
ISBN 1-283-37995-3
9786613379955
1-4008-4269-7
Classificazione SI 830
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Chapter One: Introduction -- Chapter Two: Gâteaux differentiability of Lipschitz functions -- Chapter Three: Smoothness, convexity, porosity, and separable determination -- Chapter Four: ε-Fréchet differentiability -- Chapter Five: Γ-null and Γn-null sets -- Chapter Six: Férchet differentiability except for Γ-null sets -- Chapter Seven: Variational principles -- Chapter Eight: Smoothness and asymptotic smoothness -- Chapter Nine: Preliminaries to main results -- Chapter Ten: Porosity, Γn- and Γ-null sets -- Chapter Eleven: Porosity and ε-Fréchet differentiability -- Chapter Twelve: Fréchet differentiability of real-valued functions -- Chapter Thirteen: Fréchet differentiability of vector-valued functions -- Chapter Fourteen: Unavoidable porous sets and nondifferentiable maps -- Chapter Fifteen: Asymptotic Fréchet differentiability -- Chapter Sixteen: Differentiability of Lipschitz maps on Hilbert spaces -- Bibliography -- Index -- Index of Notation
Record Nr. UNINA-9910823398203321
Lindenstrauss Joram <1936->  
Princeton, : Princeton University Press, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonparametric Econometric Methods and Application
Nonparametric Econometric Methods and Application
Autore Stengos Thanasis
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (224 p.)
Soggetto non controllato discrete duration models
volatility feedback effect
semiparametric estimation
nonparametric method
GLS detrending
functional coefficients
purified implied volatility
country competitiveness index
nonparametric frontiers
efficiency
materials balance condition
panel data
Dirichlet process prior
classification
indicators
Kendall’s tau
realised volatility
Malmquist productivity index
conditional dependence index
wavelet
dependent Bayesian nonparametrics
TFP growth
Solow economic growth convergence model
unit root testing
nonparametric 2SLS estimator
random forests
competitiveness
slice sampling
integrated difference kernel estimator
maximum score estimator
heterogeneous autoregressive model
generalized additive models
Monte Carlo
tensor products
cubic spline penalty
M-estimation
nonparametric copula
leverage effect
conditional quantile function
emissions
efficient semiparamteric estimation
DEA
tail dependence index
difference kernel estimator
nonparametric threshold regression
machine learning
factors
local linear regression
European Union
financial development
series estimator
production efficiency
ISBN 3-03897-965-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346844503321
Stengos Thanasis  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui