top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Remote Sensing for Global Forest Monitoring
Advances in Remote Sensing for Global Forest Monitoring
Autore Tomppo Erkki
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (352 p.)
Soggetto topico Environmental economics
Research and information: general
Soggetto non controllato activity data
bootstrapping
boreal forest
Bowen ratio
C-band
canopy height model
carbon flux
classification
compatible equation
constrained neighbor interpolation
CRFasRNN
CUSUM
data assessment
data fusion
deep learning
deforestation
degradation
digital surface model
digital terrain model
drought
dual-FCN8s
EBLUP
emissions factor
error propagation
error-in-variable modeling
FCN8s
field measured LAI
forest area change
forest cover
forest disturbance mapping
forest monitoring
forest structure change
forest type
genetic algorithm
Germany
GF2
improved k-NN
inconsistency
IPCC good practice guidelines
La Rioja
land use land cover
Landsat
leave-one-out cross-validation
LiDAR
logistic regression
machine-learning
magnitude
multinomial logistic regression
multitemporal LiDAR and stand-level estimates
n/a
near real-time monitoring
nonlinear seemingly unrelated regression
NRT monitoring
ordinary neighbor interpolation
Picea crassifolia Kom
point cloud density
random forest
random forests
remotely sensed LAI
removals factor
savanna
Sentinel 2
Sentinel-1
Sentinel-2
small area estimation
South Africa
state space models
statistical estimator
stereo imagery
support vector machine
synthetic aperture radar
temperate forest
temporal dynamics
time series satellite data
tropical forest
tropical peat
uncertainty
uncertainty evaluation
validation
windstorm damage
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557338103321
Tomppo Erkki  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Forest Fire Risk Prediction
Forest Fire Risk Prediction
Autore Nolan Rachael
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (235 p.)
Soggetto topico Biology, life sciences
Forestry & related industries
Research & information: general
Soggetto non controllato acid rain
aerosol
alien pathogen
allochthonous species
biomass burning
canopy bulk density
China
climate change
critical LFMC threshold
crown fire
Cupressus sempervirens
direct estimation
disease
drought
drying tests
epicormic resprouter
eucalyptus
fire behavior
fire danger
fire danger rating
fire management
fire modeling
fire regime
fire risk
fire season
fire severity
fire size
fire weather
fire weather patterns
flammability
flammability feedbacks
foliar moisture content
forest fire
forest fire driving factors
forest fire management
forest fire occurrence
forest/grassland fire
fuel moisture
fuel moisture content
fuels
FWI system
humidity diffusion coefficients
introduced fungus
leaf water potential
machine learning
mass loss calorimeter
meteorological factor regression
MNI
modeling
moisture content
n/a
occurrence of forest fire
plant traits
PM2.5
Portugal
prediction accuracy
prescribed burning
radiative transfer model
random forest
RCP
remote sensing
Seiridium cardinale
senescence
southwest China
SSR
temperate forest
time lag
variable importance
vulnerability to wildfires
wildfire
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557387103321
Nolan Rachael  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui