Vai al contenuto principale della pagina

Intelligent Biosignal Analysis Methods



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Jović Alan Visualizza persona
Titolo: Intelligent Biosignal Analysis Methods Visualizza cluster
Pubblicazione: Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica: 1 electronic resource (256 p.)
Soggetto topico: Information technology industries
Soggetto non controllato: sleep stage scoring
neural network-based refinement
residual attention
T-end annotation
signal quality index
tSQI
optimal shrinkage
emotion
EEG
DEAP
CNN
surgery image
disgust
autonomic nervous system
electrocardiogram
galvanic skin response
olfactory training
psychophysics
smell
wearable sensors
wine sensory analysis
accuracy
convolution neural network (CNN)
classifiers
electrocardiography
k-fold validation
myocardial infarction
sensitivity
sleep staging
electroencephalography (EEG)
brain functional connectivity
frequency band fusion
phase-locked value (PLV)
wearable device
emotional state
mental workload
stress
heart rate
eye blinks rate
skin conductance level
emotion recognition
electroencephalogram (EEG)
photoplethysmography (PPG)
machine learning
feature extraction
feature selection
deep learning
non-stationarity
individual differences
inter-subject variability
covariate shift
cross-participant
inter-participant
drowsiness detection
EEG features
drowsiness classification
fatigue detection
residual network
Mish
spatial transformer networks
non-local attention mechanism
Alzheimer's disease
fall detection
event-centered data segmentation
accelerometer
window duration
Persona (resp. second.): JovićAlan
Sommario/riassunto: This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others.
Titolo autorizzato: Intelligent Biosignal Analysis Methods  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557354803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui