Vai al contenuto principale della pagina

Computational Methods for Risk Management in Economics and Finance



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Resta Marina Visualizza persona
Titolo: Computational Methods for Risk Management in Economics and Finance Visualizza cluster
Pubblicazione: MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica: 1 online resource (234 p.)
Soggetto non controllato: admissible convex risk measures
auto-regressive
Big Data
capital allocation
capital market pricing model
cartography
conditional Value-at-Risk (CoVaR)
convex programming
copula models
CoVaR
credit risk
current drawdown
data science
deep learning
efficient frontier
estimation error
financial markets
financial mathematics
financial regulation
fractional Kelly allocation
growth optimal portfolio
independence assumption
International Financial Reporting Standard 9
loss given default
Markowitz portfolio theory
multi-step ahead forecasts
non-stationarity
ordered probit
portfolio theory
quantile regression
quantitative risk management
random matrices
risk measure
risk-based portfolios
shrinkage
stock prices
structural models
systemic risk
systemic risk measures
target matrix
utility functions
value at risk
weighted logistic regression
Wishart model
Sommario/riassunto: At present, computational methods have received considerable attention in economics and finance as an alternative to conventional analytical and numerical paradigms. This Special Issue brings together both theoretical and application-oriented contributions, with a focus on the use of computational techniques in finance and economics. Examined topics span on issues at the center of the literature debate, with an eye not only on technical and theoretical aspects but also very practical cases.
Titolo autorizzato: Computational Methods for Risk Management in Economics and Finance  Visualizza cluster
ISBN: 3-03928-499-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910404091803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui