top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Autore Kisi Ozgur
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (238 p.)
Soggetto topico Research & information: general
Soggetto non controllato additive regression
artificial intelligence
artificial neural network
atmospheric reanalysis
bagging
Bayesian model averaging
big data
calibration
CWP
dagging
Daymet V3
EEFlux
ensemble modeling
extension principle
flood routing
fuzzy sets and systems
Google Earth Engine
Govindpur
groundwater
groundwater level prediction
hydroinformatics
hydrologic model
improved extreme learning machine (IELM)
irrigation performance
Kernel extreme learning machines
M5 model tree
machine learning
multivariate adaptive regression spline
Muskingum method
n/a
NDVI
neural network
nitrogen compound
nitrogen prediction
non-linear modeling
PACF
particle swarm optimization
prediction intervals
prediction models
principal component analysis
random subspace
rotation forest
satellite precipitation
sensitivity analysis
shortwave radiation flux density
South Korea
spatiotemporal variation
streamflow forecasting
streamflow simulation
support vector machine
sustainability
sustainable development
SVM-LF
SVM-RF
uncertainty
uncertainty analysis
ungauged basin
WANN
water conservation
water resources
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557448103321
Kisi Ozgur  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainability Analysis and Environmental Decision-Making Using Simulation, Optimization, and Computational Analytics
Sustainability Analysis and Environmental Decision-Making Using Simulation, Optimization, and Computational Analytics
Autore Yeomans Julian Scott
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (248 p.)
Soggetto topico Mathematics & science
Research & information: general
Soggetto non controllato biofuel policy
biomass gasification
boron
business aviation
C-vine copula
classification
CO2 emissions
computer modeling
computer simulation
DEA
desalination
dynamic programming
eco-efficiency
ecological indicators
ecological relationship
electric motor
electricity production
energy modeling
energy system design
environmental footprint
factorial analysis
feature selection
feed-in tariff
financial market
forecasting
fuzzy
generation profile
Germany
input-output analysis
interval
investing
investment profitability analysis
Iowa food-energy-water nexus
joint dependencies
LASSO
machine learning
model reduction
modelling
Monte Carlo simulation
n/a
nitrogen export
nonpoint source pollution
operational flexibility
optimal allocation
optimal path
parameter estimation
point source pollution
pollutant loadings
quantile regression
reduction
regression
renewable energy
renewable energy support
reverse osmosis
seawater
simulation
simulation decomposition
sourcing
South Texas
specific power
streamflow forecasting
sustainability
system modeling
the pay-off method
turboprop
unlisted companies
urban solid waste system
water quality
water resource management
water resources
watershed management
weather modeling
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557620403321
Yeomans Julian Scott  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui