top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Autore Kisi Ozgur
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (238 p.)
Soggetto topico Research & information: general
Soggetto non controllato groundwater
artificial intelligence
hydrologic model
groundwater level prediction
machine learning
principal component analysis
spatiotemporal variation
uncertainty analysis
hydroinformatics
support vector machine
big data
artificial neural network
nitrogen compound
nitrogen prediction
prediction models
neural network
non-linear modeling
PACF
WANN
SVM-LF
SVM-RF
Govindpur
streamflow forecasting
Bayesian model averaging
multivariate adaptive regression spline
M5 model tree
Kernel extreme learning machines
South Korea
uncertainty
sustainability
prediction intervals
ungauged basin
streamflow simulation
satellite precipitation
atmospheric reanalysis
ensemble modeling
additive regression
bagging
dagging
random subspace
rotation forest
flood routing
Muskingum method
extension principle
calibration
fuzzy sets and systems
particle swarm optimization
EEFlux
irrigation performance
CWP
water conservation
NDVI
water resources
Daymet V3
Google Earth Engine
improved extreme learning machine (IELM)
sensitivity analysis
shortwave radiation flux density
sustainable development
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557448103321
Kisi Ozgur  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainability Analysis and Environmental Decision-Making Using Simulation, Optimization, and Computational Analytics
Sustainability Analysis and Environmental Decision-Making Using Simulation, Optimization, and Computational Analytics
Autore Yeomans Julian Scott
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (248 p.)
Soggetto topico Research & information: general
Mathematics & science
Soggetto non controllato streamflow forecasting
C-vine copula
quantile regression
joint dependencies
water resource management
ecological relationship
factorial analysis
input-output analysis
optimal path
reduction
urban solid waste system
desalination
reverse osmosis
modelling
simulation
parameter estimation
seawater
boron
watershed management
nonpoint source pollution
point source pollution
water quality
pollutant loadings
South Texas
eco-efficiency
DEA
CO2 emissions
forecasting
ecological indicators
biomass gasification
machine learning
computer modeling
computer simulation
regression
model reduction
LASSO
classification
feature selection
financial market
investing
sustainability
renewable energy support
energy modeling
energy system design
generation profile
environmental footprint
renewable energy
electricity production
unlisted companies
Germany
feed-in tariff
biofuel policy
investment profitability analysis
the pay-off method
simulation decomposition
sourcing
operational flexibility
business aviation
turboprop
electric motor
specific power
Monte Carlo simulation
Iowa food-energy-water nexus
nitrogen export
system modeling
weather modeling
optimal allocation
interval
fuzzy
dynamic programming
water resources
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557620403321
Yeomans Julian Scott  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui