top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Risk, Ruin and Survival: Decision Making in Insurance and Finance
Risk, Ruin and Survival: Decision Making in Insurance and Finance
Autore Ren Jiandong
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (210 p.)
Soggetto non controllato insurance
multiplicative background risk model
renewal process
dual risk model
collective risk model
risk measure
aggregate risk
Laplace transform
transfer function
risk management
risk theory
maximal tail dependence
constant interest rate
partial integro-differential equation
reinsurance
financial time series
spatial risk measures and corresponding axiomatic approach
central limit theorem
integral equation
Markovian arrival process
systematic risk
information processing
discounted aggregate claims
surplus process
weighted cuts
rate of spatial diversification
national culture
operational risk
covariance
cumulative Parisian ruin
spatial dependence
background risk
survival analysis
Monte Carlo
aggregate discounted claims
stochastic orders
order statistic
max-stable random fields
copulas
hazard model
multivariate gamma distribution
copula
advanced measurement approach
concomitant
archimedean copulas
rating migrations
ruin probability
clustering
confidence interval
individual risk model
numerical approximation
value-at-risk
ISBN 3-03928-517-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Risk, Ruin and Survival
Record Nr. UNINA-9910404092203321
Ren Jiandong  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic Processes with Applications
Stochastic Processes with Applications
Autore Macci Claudio
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (284 p.)
Soggetto non controllato arithmetic progressions
weighted quadratic variation
fractional differential-difference equations
small deviations
periodic intensity functions
realized volatility
rate of convergence
host-parasite interaction
first Chebyshev function
regularly varying functions
Cohen and Grossberg neural networks
mixture of Gaussian laws
diffusion model
transition densities
re-service
Strang–Marchuk splitting approach
random delays
nematode infection
first-passage-time
total variation distance
forecast combinations
products of primes
discrete time stochastic model
multiplicative noises
slowly varying functions
growth curves
stochastic process
loan interest rate regulation
birth-death process
non-Markovian queue
catastrophes
exogenous factors
seasonal environment
repairs
proportional hazard rates
structural breaks
transient probabilities
first passage time (FPT)
bounds
double-ended queues
mixed Gaussian process
stochastic order
time between inspections
busy period
diffusion
continuous-time Markov chains
general bulk service
time-non-homogeneous birth-death processes
stand-by server
reliability
sensor networks
random impulses
scale family of distributions
maximum likelihood estimation
multi-state network
totally positive of order 2
lognormal diffusion process
fractional birth-death processes
exact asymptotics
stochastic orders
time-non-homogeneous jump-diffusion processes
asymptotic distribution
inverse first-passage problem
nonhomogeneous Poisson process
two-dimensional signature
multiple vacation
first-passage time
mean square stability
fractional queues
differential entropy
random parameter matrices
Wasserstein distance
breakdown and repair
fusion estimation
ISBN 3-03921-729-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367741003321
Macci Claudio  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui