top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Risk, Ruin and Survival: Decision Making in Insurance and Finance
Risk, Ruin and Survival: Decision Making in Insurance and Finance
Autore Ren Jiandong
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (210 p.)
Soggetto non controllato advanced measurement approach
aggregate discounted claims
aggregate risk
archimedean copulas
background risk
central limit theorem
clustering
collective risk model
concomitant
confidence interval
constant interest rate
copula
copulas
covariance
cumulative Parisian ruin
discounted aggregate claims
dual risk model
financial time series
hazard model
individual risk model
information processing
insurance
integral equation
Laplace transform
Markovian arrival process
max-stable random fields
maximal tail dependence
Monte Carlo
multiplicative background risk model
multivariate gamma distribution
n/a
national culture
numerical approximation
operational risk
order statistic
partial integro-differential equation
rate of spatial diversification
rating migrations
reinsurance
renewal process
risk management
risk measure
risk theory
ruin probability
spatial dependence
spatial risk measures and corresponding axiomatic approach
stochastic orders
surplus process
survival analysis
systematic risk
transfer function
value-at-risk
weighted cuts
ISBN 3-03928-517-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Risk, Ruin and Survival
Record Nr. UNINA-9910404092203321
Ren Jiandong  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic Processes with Applications
Stochastic Processes with Applications
Autore Macci Claudio
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (284 p.)
Soggetto non controllato arithmetic progressions
asymptotic distribution
birth-death process
bounds
breakdown and repair
busy period
catastrophes
Cohen and Grossberg neural networks
continuous-time Markov chains
differential entropy
diffusion
diffusion model
discrete time stochastic model
double-ended queues
exact asymptotics
exogenous factors
first Chebyshev function
first passage time (FPT)
first-passage time
first-passage-time
forecast combinations
fractional birth-death processes
fractional differential-difference equations
fractional queues
fusion estimation
general bulk service
growth curves
host-parasite interaction
inverse first-passage problem
loan interest rate regulation
lognormal diffusion process
maximum likelihood estimation
mean square stability
mixed Gaussian process
mixture of Gaussian laws
multi-state network
multiple vacation
multiplicative noises
nematode infection
non-Markovian queue
nonhomogeneous Poisson process
periodic intensity functions
products of primes
proportional hazard rates
random delays
random impulses
random parameter matrices
rate of convergence
re-service
realized volatility
regularly varying functions
reliability
repairs
scale family of distributions
seasonal environment
sensor networks
slowly varying functions
small deviations
stand-by server
stochastic order
stochastic orders
stochastic process
Strang-Marchuk splitting approach
structural breaks
time between inspections
time-non-homogeneous birth-death processes
time-non-homogeneous jump-diffusion processes
total variation distance
totally positive of order 2
transient probabilities
transition densities
two-dimensional signature
Wasserstein distance
weighted quadratic variation
ISBN 3-03921-729-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367741003321
Macci Claudio  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui