Fractional Calculus - Theory and Applications
| Fractional Calculus - Theory and Applications |
| Autore | Macías Díaz Jorge E |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (198 p.) |
| Soggetto topico |
Mathematics & science
Research & information: general |
| Soggetto non controllato |
a spiral-plate heat exchanger
boundedness Caputo fractional derivative coupled hybrid Sturm-Liouville differential equation coupled systems dhage type fixed point theorem distributed delay economic growth Euler wavelets existence finite time stability fixed point fractional derivative fractional differential equations fractional impulsive differential equations fractional order derivative model GPU gradient descent group of seven Grünwald-Letnikov scheme Hadamard-Caputo fractional derivative heat transfer Hermite-Hadamard type inequality Hermite-Hadamard-Fejér inequality hybrid differential equations impulsive differential equations instantaneous impulses integral boundary coupled hybrid condition integral equations Katugampola fractional integral operator Laplace transform linear fractional system LR-p-convex interval-valued function malaria infection Mittag-Leffler function multi-point boundary coupled hybrid condition n/a non-instantaneous impulses nonlinear system nonlocal boundary conditions nonstandard finite-difference method numerical approximation parallel model positivity potential and current in an electric transmission line random walk of a population Riemann-Liouville fractional derivative space-fractional Fokker-Planck operator stochastic epidemic model stochastic generalized Euler time-fractional diffusion-wave equations time-fractional wave with the time-fractional damped term |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910580217003321 |
Macías Díaz Jorge E
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mathematical tools for understanding infectious diseases dynamics [[electronic resource] /] / Odo Diekmann, Hans Heesterbeek, and Tom Britton
| Mathematical tools for understanding infectious diseases dynamics [[electronic resource] /] / Odo Diekmann, Hans Heesterbeek, and Tom Britton |
| Autore | Diekmann O |
| Edizione | [Course Book] |
| Pubbl/distr/stampa | Princeton, : Princeton University Press, 2012 |
| Descrizione fisica | 1 online resource (517 p.) |
| Disciplina | 614.4 |
| Altri autori (Persone) |
HeesterbeekHans <1960->
BrittonTom |
| Collana | Princeton series in theoretical and computational biology |
| Soggetto topico |
Epidemiology - Mathematical models
Communicable diseases - Mathematical models |
| Soggetto non controllato |
Bayesian statistical inference
ICU model Markov chain Monte Carlo method Markov chain Monte Carlo methods ReedІrost epidemic age structure asymptotic speed bacterial infections biological interpretation closed population compartmental epidemic systems consistency conditions contact duration demography dependence disease control disease outbreaks disease prevention disease transmission endemic epidemic models epidemic outbreak epidemic epidemiological models epidemiological parameters epidemiology general epidemic growth rate homogeneous community hospital infections hospital patients host population growth host human social behavior i-states individual states infected host infection transmission infection infectious disease epidemiology infectious disease infectious diseases infectious output infective agent infectivity intensive care units intrinsic growth rate larvae macroparasites mathematical modeling mathematical reasoning maximum likelihood estimation microparasites model construction outbreak situations outbreak pair approximation parasite load parasite population models propagation speed reproduction number separable mixing sexual activity stochastic epidemic model structured population models susceptibility vaccination |
| ISBN |
1-283-57875-1
9786613891204 1-4008-4562-9 |
| Classificazione | SCI008000MAT003000MED022090 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Contents -- Preface -- Part I. The bare bones: Basic issues in the simplest context -- Part II. Structured populations -- Part III. Case studies on inference -- Part IV. Elaborations -- Bibliography -- Index |
| Record Nr. | UNINA-9910785785403321 |
Diekmann O
|
||
| Princeton, : Princeton University Press, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||