top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Process Monitoring for Industry 4.0
Advanced Process Monitoring for Industry 4.0
Autore Reis Marco S
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (288 p.)
Soggetto topico Technology: general issues
Soggetto non controllato artificial generation of variability
auto machine learning
classification
combustion
condition monitoring
construction industry
continuous casting
control chart pattern
convolutional neural network
curve resolution
data augmentation
data mining
data reconciliation
decision support systems
digital processing
discriminant analysis
disruption management
disruptions
expert systems
failure mode and effects analysis (FMEA)
failure mode effects analysis
fault detection
fault diagnosis
high-dimensional data
imbalanced data
Industry 4.0
latent variables models
load identification
membrane
monitoring
multi-mode model
multi-phase residual recursive model
multiscale
multivariate data analysis
n/a
neural networks
non-intrusive load monitoring
online
optical sensors
OPTICS
pasting process
PCA
plaster production
PLS
principal component analysis
process control
process image
process monitoring
quality control
quality prediction
real-time
risk priority number
rolling bearing
semiconductor manufacturing
signal detection
Six Sigma
spatial-temporal data
spectroscopy measurements
statistical process control
statistical process monitoring
time series classification
yield improvement
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557491503321
Reis Marco S  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Time Series Modelling
Time Series Modelling
Autore Weiss Christian H
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (372 p.)
Soggetto topico Humanities
Soggetto non controllato anomaly detection
bank failures
Bell distribution
bivariate Poisson INGARCH model
cointegration
count data
count time series
counting series
CUSUM control chart
dispersion test
electric power
entropy based particle filter
estimation
ETS
extended binomial distribution
finance
forecasting accuracy
Holt-Winters
INAR
INAR-type time series
INGACRCH
integer-valued moving average model
integer-valued threshold models
integer-valued time series
Julia programming language
kernel density estimation
limit theorems
local field potential
long-range dependence
machine learning
minimum density power divergence estimator
missing data
models
multivariate count data
multivariate data analysis
multivariate time series
neural network autoregression
nonstationary
ordinal patterns
outliers
overdispersion
parameter estimation
periodic autoregression
random survival rate
relative entropy
robust estimation
Romania
SARIMA
seasonality
SETAR
spectral matrix
state-space model
statistical process monitoring
Student's t-process
subspace algorithms
thinning operator
time series
time series analysis
time series of counts
transactions
unemployment rate
unsupervised learning
VARMA models
volatility fluctuation
zero-inflation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557541003321
Weiss Christian H  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui