Advanced Process Monitoring for Industry 4.0
| Advanced Process Monitoring for Industry 4.0 |
| Autore | Reis Marco S |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (288 p.) |
| Soggetto topico | Technology: general issues |
| Soggetto non controllato |
artificial generation of variability
auto machine learning classification combustion condition monitoring construction industry continuous casting control chart pattern convolutional neural network curve resolution data augmentation data mining data reconciliation decision support systems digital processing discriminant analysis disruption management disruptions expert systems failure mode and effects analysis (FMEA) failure mode effects analysis fault detection fault diagnosis high-dimensional data imbalanced data Industry 4.0 latent variables models load identification membrane monitoring multi-mode model multi-phase residual recursive model multiscale multivariate data analysis n/a neural networks non-intrusive load monitoring online optical sensors OPTICS pasting process PCA plaster production PLS principal component analysis process control process image process monitoring quality control quality prediction real-time risk priority number rolling bearing semiconductor manufacturing signal detection Six Sigma spatial-temporal data spectroscopy measurements statistical process control statistical process monitoring time series classification yield improvement |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557491503321 |
Reis Marco S
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Time Series Modelling
| Time Series Modelling |
| Autore | Weiss Christian H |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (372 p.) |
| Soggetto topico | Humanities |
| Soggetto non controllato |
anomaly detection
bank failures Bell distribution bivariate Poisson INGARCH model cointegration count data count time series counting series CUSUM control chart dispersion test electric power entropy based particle filter estimation ETS extended binomial distribution finance forecasting accuracy Holt-Winters INAR INAR-type time series INGACRCH integer-valued moving average model integer-valued threshold models integer-valued time series Julia programming language kernel density estimation limit theorems local field potential long-range dependence machine learning minimum density power divergence estimator missing data models multivariate count data multivariate data analysis multivariate time series neural network autoregression nonstationary ordinal patterns outliers overdispersion parameter estimation periodic autoregression random survival rate relative entropy robust estimation Romania SARIMA seasonality SETAR spectral matrix state-space model statistical process monitoring Student's t-process subspace algorithms thinning operator time series time series analysis time series of counts transactions unemployment rate unsupervised learning VARMA models volatility fluctuation zero-inflation |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557541003321 |
Weiss Christian H
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||