top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Approximate Bayesian Inference
Approximate Bayesian Inference
Autore Alquier Pierre
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (508 p.)
Soggetto topico Mathematics and Science
Research and information: general
Soggetto non controllato approximate Bayesian computation
Approximate Bayesian Computation
approximate Bayesian computation (ABC)
Bayesian inference
Bayesian sampling
Bayesian statistics
Bethe free energy
bifurcation
complex systems
control variates
data imputation
data streams
deep learning
differential evolution
differential privacy (DP)
discrete state space
dynamical systems
Edward-Sokal coupling
entropy
ergodicity
expectation-propagation
factor graphs
fixed-form variational Bayes
Gaussian
generalisation bounds
Gibbs posterior
gradient descent
greedy algorithm
Hamilton Monte Carlo
hyperparameters
integrated nested laplace approximation
Kullback-Leibler divergence
Langevin dynamics
Langevin Monte Carlo
Laplace approximations
machine learning
Markov chain
Markov chain Monte Carlo
Markov Chain Monte Carlo
Markov kernels
MCMC
MCMC-SAEM
mean-field
message passing
meta-learning
Monte Carlo integration
network modeling
network variability
neural networks
no free lunch theorems
non-reversible dynamics
online learning
online optimization
PAC-Bayes
PAC-Bayes theory
particle flow
principal curves
priors
probably approximately correct
regret bounds
Riemann Manifold Hamiltonian Monte Carlo
robustness
sequential learning
sequential Monte Carlo
Sequential Monte Carlo
sleeping experts
sparse vector technique (SVT)
statistical learning theory
statistical mechanics
Stiefel manifold
stochastic gradients
stochastic volatility
thinning
variable flow
variational approximations
variational Bayes
variational free energy
variational inference
variational message passing
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576874903321
Alquier Pierre  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonparametric Statistical Inference with an Emphasis on Information-Theoretic Methods
Nonparametric Statistical Inference with an Emphasis on Information-Theoretic Methods
Autore Mielniczuk Jan
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (226 p.)
Soggetto topico History of engineering and technology
Mechanical engineering and materials
Technology: general issues
Soggetto non controllato adaptive splines
archimedean copula
B-splines
change points
CIFE
CMI
conditional infomax feature extraction
conditional mutual information
consistency
consistent selection
entropy
estimation
extreme-value copula
gaussian mixture
generalized information criterion
generative tree model
high-dimensional regression
high-dimensional time series
influence functions
information measures
information theory
JMI
joint mutual information criterion
kernel estimation
learning systems
loss function
Markov blanket
maximum likelihood estimation
minimum distance estimation
misclassification risk
misspecification
model misspecification
multivariate analysis
n/a
network estimation
nonparametric variable selection criteria
nonstationarity
parameter estimation
penalized estimation
prediction methods
privacy
random predictors
right-censored data
robustness
semiparametric regression
statistical learning theory
subgaussianity
supervised classification
synthetic data transformation
tail dependency
time series
variable selection consistency
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576873203321
Mielniczuk Jan  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui