top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Electrochemical Energy Materials
Advances in Electrochemical Energy Materials
Autore Fan Zhaoyang
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (156 p.)
Soggetto non controllato 0.5Li2MnO3·0.5LiMn0.8Ni0.1Co0.1O2
AC filtering
anode material
biotemplate
carbon microfibers
carbon nanostructures
cathode material
cathode materials
Co-doping
co-precipitation method
Cr3+/Cr6+ redox pairs
cross-linked carbon nanofiber
cycling performance
elasto-plastic stress
electrochemical energy storage
electrochemical performance
electrochemical properties
electrode materials
energy storage and conversion
garnet
green synthesis route
high-rate supercapacitor
inductively-coupled plasma
Li ion battery
Li-rich layered oxide
Li2MoO3
LiFePO4/C composite
lithium ion batteries
lithium-ion batteries
lithium-ion battery
lithium-ion conductivity
lithium-rich layered oxide
material index
mechanical stability
methanol
microstructure
Mn3O4
nanostructure
nanotubes
parametric analysis
pulse power storage
sol-gel method
solid-state batteries
solid-state complexation method
solid-state electrolyte
specific capacitance
specific capacity
submicron powder
sulfidation
supercapacitors
thermal annealing
vertical graphene
voltage attenuation
voltage decay
water
X-ray diffraction
ZIF-67
zinc sulfide
ISBN 3-03928-643-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404091903321
Fan Zhaoyang  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial Intelligence Methods Applied to Urban Remote Sensing and GIS
Artificial Intelligence Methods Applied to Urban Remote Sensing and GIS
Autore Lee Chang-Wook
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (165 p.)
Soggetto topico Environmental science, engineering & technology
Soggetto non controllato artificial intelligence
boosted tree
change detection
deep learning
DInSAR
DPM method
earth observation
ensemble models
GIS
groundwater potential
Jakarta
land subsidence
land subsidence susceptibility mapping
machine learning
Monte Carlo simulation
Monterrey Metropolitan Area
Mt. Umyeon landslides
neural networks
physical slope model
probabilistic method
prototype selection
remote sensing
river pollution
seismic literacy
seismic vulnerability map
Sentinel-1
Seoul
space data science
specific capacity
StaMPS processing
supervised classification
sustainable development
synthetic aperture radar
time-series
time-series InSAR
transfer learning
urban open spaces
urban vegetation
WSN
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557605403321
Lee Chang-Wook  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui