top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data Science and Knowledge Discovery
Data Science and Knowledge Discovery
Autore Portela Filipe
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (254 p.)
Soggetto topico Computer science
Information technology industries
Soggetto non controllato activity recognition
adaptation process
ArcGIS
artificial intelligence
attribution
authorship
automation
big data
Big Data
box-counting framework
chatbots
classification
content base image retrieval
COVID-19
crisis reporting
customer relationship management (CRM)
dashboard
data analysis
data analytics
data augmentation
data mining
data science
databases
decision systems
deep features
deep learning
digital humanities
digital infrastructures
distracted driving
driving behavior
driving operation area
e-commerce
economic determinants of open data
ESP32 microcontroller
feature extraction
forensic intelligence
fractal dimension
geoinformation technology
governance and social institutions
humanities
ICT
information systems
interdisciplinary research
internet of things
ioCOVID19
journalists
linked open data
LoRaWAN
machine learning
media analytics
media criticism
multimedia document retrieval
n/a
neural networks
news media
open government data
prediction by partial matching
public health
rough sets
rule based systems
SARS-CoV-2
script Python
semantic information retrieval
smart homes
social sciences
spatio-temporal
territorial road network
text mining
textbook research
The Things Network
Web Intelligence
WebGIS
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576878103321
Portela Filipe  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sensing and Signal Processing in Smart Healthcare
Sensing and Signal Processing in Smart Healthcare
Autore Zhao Wenbing
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (198 p.)
Soggetto topico English
For ELT / ESL learning, courses, examinations and certificates
Language and Linguistics
Language teaching and learning
Soggetto non controllato ambient assisted living
arrhythmia
auditory perception
autoencoder
Bayesian inference
behavioral analysis
biometrics
brain cancer detection
Cascaded-Integrator-Comb (CIC) filter
computer vision
computer-assisted screening
Cramér-Rao lower bound (CRLB)
CUDA
data adaptive demodulator
deep learning
denoising autoencoder
Dynamic Time Warping
eHealth
endothelial dysfunction
fixed point math
FPGA
gesture recognition
Graphics Processing Units (GPUs)
heartbeat classification
Hidden Markov Model
human monitoring
human motion
human-computer interaction
hyperspectral imaging
impaired sensor
indoor localisation
indoor monitoring
Inertial Measurement Unit (IMU)
inertial sensors
intelligent luminaires
Internet of Things (IoT)
K-means
Kalman filter
keypoints feature matching
machine learning
motion estimation
n/a
near-infrared images
OpenCL
OpenMP
photoplethysmography
scale invariant feature transform
simulation
sleep pose recognition
smart homes
software engineering
spline function
Structural Health Monitoring
subharmonics
Time of Arrival (TOA)
Time of Flight
unsupervised clustering
usability
wearable sensors
web control access
web security
Wi-Fi
wireless sensor network
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557483503321
Zhao Wenbing  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui