Biomaterials for Bone Tissue Engineering |
Autore | Sanz José Antonio |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (244 p.) |
Soggetto non controllato |
bone morphogenesis proteins
finite element bone tissue engineering electrically active implants prediction marker vertebra direct current electric field loose sintering Lattice Boltzmann method Pelvis automatic segmentation MSCs additive manufacturing finite element method bioelectromagnetism optimization scaffold design cone beam computed tomography computational modelling bone regeneration oxygen delivery biomaterials bone tissue spark plasma sintering critical size defect musculoskeletal modelling resonance frequency analysis minipig numerical methods in bioengineering computational fluid dynamics maxillofacial osteoporosis sliding window osseointegration mass transfer substrate-mediated electrical stimulation Fixation design dental implants human dental pulp stem cells numerical results elastoplasticity bone tissue regeneration finite-element simulation 3D-printed implant selective laser melting Lagrangian scalar tracking cortical bone micromechanics trabeculae finite element modelling damage titanium powder metallurgy pelvis biomechanics computational mechanobiology culturing protocol bone adaptation stem cell Bone tumor trabecular bone score Xenografts triply periodic minimal surfaces computed tomography multiscale analysis cartilage digital image correlation osteo-differentiation wollastonite transport finite element analysis bone marrow fracture risk von Mises stress electric stimulation mechanical behaviour adipogenesis biomaterial applications computational mechanics Ti6Al4V scaffolds finite elements Otsu's method 3D virtual surgical plan |
ISBN | 3-03928-966-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910404077303321 |
Sanz José Antonio
![]() |
||
MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Hyperspectral Imaging and Applications |
Autore | Chang Chein-I |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (632 p.) |
Soggetto topico |
Technology: general issues
History of engineering & technology |
Soggetto non controllato |
biodiversity
peatland vegetation type classification hyperspectral in situ measurements hyperspectral image (HSI) multiscale union regions adaptive sparse representation (MURASR) multiscale spatial information imaging spectroscopy airborne laser scanning minimum noise fraction class imbalance Africa agroforestry tree species hyperspectral unmixing endmember extraction band selection spectral variability prototype space ensemble learning rotation forest semi-supervised local discriminant analysis optical spectral region thermal infrared spectral region mineral mapping data integration HyMap AHS raw material remote sensing nonnegative matrix factorization data-guided constraints sparseness evenness hashing ensemble hierarchical feature hyperspectral classification band expansion process (BEP) constrained energy minimization (CEM) correlation band expansion process (CBEP) iterative CEM (ICEM) nonlinear band expansion (NBE) Otsu’s method sparse unmixing local abundance nuclear norm hyperspectral detection target detection sprout detection constrained energy minimization iterative algorithm adaptive window hyperspectral imagery recursive anomaly detection local summation RX detector (LS-RXD) sliding window band selection (BS) band subset selection (BSS) hyperspectral image classification linearly constrained minimum variance (LCMV) successive LCMV-BSS (SC LCMV-BSS) sequential LCMV-BSS (SQ LCMV-BSS) vicarious calibration reflectance-based method irradiance-based method Dunhuang site 90° yaw imaging terrestrial hyperspectral imaging vineyard water stress machine learning tree-based ensemble progressive sample processing (PSP) real-time processing image fusion hyperspectral image panchromatic image structure tensor image enhancement weighted fusion spectral mixture analysis fire severity AVIRIS deep belief networks deep learning texture feature enhancement band grouping hyperspectral compression lossy compression on-board compression orthogonal projections Gram–Schmidt orthogonalization parallel processing anomaly detection sparse coding KSVD hyperspectral images (HSIs) SVM composite kernel algebraic multigrid methods hyperspectral pansharpening panchromatic intrinsic image decomposition weighted least squares filter spectral-spatial classification label propagation superpixel semi-supervised learning rolling guidance filtering (RGF) graph deep pipelined background statistics high-level synthesis data fusion data unmixing hyperspectral imaging |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910585941603321 |
Chang Chein-I
![]() |
||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Signal Analysis in Power Systems |
Autore | Leonowicz Zbigniew |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (118 p.) |
Soggetto topico | History of engineering & technology |
Soggetto non controllato |
convolutional neural networks
multi-headed CNN CNN-LSTM forecasting solar output sliding window renewable energy data mining cluster analysis power quality global power quality index electrical power network distributed generation mining industry ward algorithm different working conditions power supply restoration power supply outages failures time intervals obtaining information information recognition connection harmonization virtual power plant distributed energy resources energy storage systems grid codes power systems smart grids prosumer business model economic efficiency sensitivity analysis |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557105203321 |
Leonowicz Zbigniew
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|