Short-Term Load Forecasting 2019
| Short-Term Load Forecasting 2019 |
| Autore | Gabaldón Antonio |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (324 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
building electric energy consumption forecasting
bus load forecasting cold-start problem combined model component estimation method convolution neural network cost analysis cubic splines data augmentation data preprocessing technique day ahead DBN deep learning deep residual neural network demand response demand-side management distributed energy resources electric load forecasting electricity electricity consumption electricity demand feature extraction feature selection forecasting hierarchical short-term load forecasting hybrid energy system lasso load forecasting Load forecasting load metering long short-term memory modeling and forecasting multiobjective optimization algorithm multiple sources multivariate random forests Nordic electricity market pattern similarity performance criteria power systems preliminary load prosumers PSR random forest real-time electricity load regressive models residential load forecasting seasonal patterns short term load forecasting short-term load forecasting special days Tikhonov regularization time series transfer learning univariate and multivariate time series analysis VSTLF wavenet weather station selection |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557494303321 |
Gabaldón Antonio
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Short-Term Load Forecasting by Artificial Intelligent Technologies / Guo-Feng Fan, Ming-Wei Li, Wei-Chiang Hong
| Short-Term Load Forecasting by Artificial Intelligent Technologies / Guo-Feng Fan, Ming-Wei Li, Wei-Chiang Hong |
| Autore | Fan Guo-Feng |
| Pubbl/distr/stampa | Basel, Switzerland : , : MDPI, , 2019 |
| Descrizione fisica | 1 electronic resource (444 p.) |
| Soggetto non controllato |
meta-heuristic algorithms
artificial neural networks (ANNs) knowledge-based expert systems statistical forecasting models evolutionary algorithms short term load forecasting novel intelligent technologies support vector regression/support vector machines seasonal mechanism |
| ISBN |
9783038975830
3038975834 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346838403321 |
Fan Guo-Feng
|
||
| Basel, Switzerland : , : MDPI, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||