top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Short-Term Load Forecasting 2019
Short-Term Load Forecasting 2019
Autore Gabaldón Antonio
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (324 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato building electric energy consumption forecasting
bus load forecasting
cold-start problem
combined model
component estimation method
convolution neural network
cost analysis
cubic splines
data augmentation
data preprocessing technique
day ahead
DBN
deep learning
deep residual neural network
demand response
demand-side management
distributed energy resources
electric load forecasting
electricity
electricity consumption
electricity demand
feature extraction
feature selection
forecasting
hierarchical short-term load forecasting
hybrid energy system
lasso
load forecasting
Load forecasting
load metering
long short-term memory
modeling and forecasting
multiobjective optimization algorithm
multiple sources
multivariate random forests
Nordic electricity market
pattern similarity
performance criteria
power systems
preliminary load
prosumers
PSR
random forest
real-time electricity load
regressive models
residential load forecasting
seasonal patterns
short term load forecasting
short-term load forecasting
special days
Tikhonov regularization
time series
transfer learning
univariate and multivariate time series analysis
VSTLF
wavenet
weather station selection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557494303321
Gabaldón Antonio  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Short-Term Load Forecasting by Artificial Intelligent Technologies / Guo-Feng Fan, Ming-Wei Li, Wei-Chiang Hong
Short-Term Load Forecasting by Artificial Intelligent Technologies / Guo-Feng Fan, Ming-Wei Li, Wei-Chiang Hong
Autore Fan Guo-Feng
Pubbl/distr/stampa Basel, Switzerland : , : MDPI, , 2019
Descrizione fisica 1 electronic resource (444 p.)
Soggetto non controllato meta-heuristic algorithms
artificial neural networks (ANNs)
knowledge-based expert systems
statistical forecasting models
evolutionary algorithms
short term load forecasting
novel intelligent technologies
support vector regression/support vector machines
seasonal mechanism
ISBN 9783038975830
3038975834
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346838403321
Fan Guo-Feng  
Basel, Switzerland : , : MDPI, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui