top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Nonparametric Statistical Inference with an Emphasis on Information-Theoretic Methods
Nonparametric Statistical Inference with an Emphasis on Information-Theoretic Methods
Autore Mielniczuk Jan
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (226 p.)
Soggetto topico History of engineering and technology
Mechanical engineering and materials
Technology: general issues
Soggetto non controllato adaptive splines
archimedean copula
B-splines
change points
CIFE
CMI
conditional infomax feature extraction
conditional mutual information
consistency
consistent selection
entropy
estimation
extreme-value copula
gaussian mixture
generalized information criterion
generative tree model
high-dimensional regression
high-dimensional time series
influence functions
information measures
information theory
JMI
joint mutual information criterion
kernel estimation
learning systems
loss function
Markov blanket
maximum likelihood estimation
minimum distance estimation
misclassification risk
misspecification
model misspecification
multivariate analysis
n/a
network estimation
nonparametric variable selection criteria
nonstationarity
parameter estimation
penalized estimation
prediction methods
privacy
random predictors
right-censored data
robustness
semiparametric regression
statistical learning theory
subgaussianity
supervised classification
synthetic data transformation
tail dependency
time series
variable selection consistency
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576873203321
Mielniczuk Jan  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Uncertainty Quantification Techniques in Statistics
Uncertainty Quantification Techniques in Statistics
Autore Kim Jong-Min
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (128 p.)
Soggetto non controllato ?1 lasso
?2 ridge
accuracy
adapative lasso
adaptive lasso
allele read counts
AUROC
BH-FDR
data envelopment analysis
elastic net
ensembles
entropy
feature selection
gene expression data
gene-expression data
geometric distribution
geometric mean
Gompertz distribution
group efficiency comparison
high-throughput
Kullback-Leibler divergence
Laplacian matrix
lasso
LASSO
low-coverage
MCP
mixture model
next-generation sequencing
probability proportional to size (PPS) sampling
randomization device
resampling
sandwich variance estimator
SCAD
sea surface temperature
semiparametric regression
sensitive attribute
SIS
Skew-Reflected-Gompertz distribution
stochastic frontier model
Yennum et al.'s model
ISBN 3-03928-547-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404091103321
Kim Jong-Min  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui