Nonparametric Statistical Inference with an Emphasis on Information-Theoretic Methods
| Nonparametric Statistical Inference with an Emphasis on Information-Theoretic Methods |
| Autore | Mielniczuk Jan |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (226 p.) |
| Soggetto topico |
History of engineering and technology
Mechanical engineering and materials Technology: general issues |
| Soggetto non controllato |
adaptive splines
archimedean copula B-splines change points CIFE CMI conditional infomax feature extraction conditional mutual information consistency consistent selection entropy estimation extreme-value copula gaussian mixture generalized information criterion generative tree model high-dimensional regression high-dimensional time series influence functions information measures information theory JMI joint mutual information criterion kernel estimation learning systems loss function Markov blanket maximum likelihood estimation minimum distance estimation misclassification risk misspecification model misspecification multivariate analysis n/a network estimation nonparametric variable selection criteria nonstationarity parameter estimation penalized estimation prediction methods privacy random predictors right-censored data robustness semiparametric regression statistical learning theory subgaussianity supervised classification synthetic data transformation tail dependency time series variable selection consistency |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910576873203321 |
Mielniczuk Jan
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Uncertainty Quantification Techniques in Statistics
| Uncertainty Quantification Techniques in Statistics |
| Autore | Kim Jong-Min |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (128 p.) |
| Soggetto non controllato |
?1 lasso
?2 ridge accuracy adapative lasso adaptive lasso allele read counts AUROC BH-FDR data envelopment analysis elastic net ensembles entropy feature selection gene expression data gene-expression data geometric distribution geometric mean Gompertz distribution group efficiency comparison high-throughput Kullback-Leibler divergence Laplacian matrix lasso LASSO low-coverage MCP mixture model next-generation sequencing probability proportional to size (PPS) sampling randomization device resampling sandwich variance estimator SCAD sea surface temperature semiparametric regression sensitive attribute SIS Skew-Reflected-Gompertz distribution stochastic frontier model Yennum et al.'s model |
| ISBN | 3-03928-547-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910404091103321 |
Kim Jong-Min
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||