Vai al contenuto principale della pagina

Visual and Camera Sensors



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Park Kang Ryoung Visualizza persona
Titolo: Visual and Camera Sensors Visualizza cluster
Pubblicazione: Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica: 1 online resource (274 p.)
Soggetto topico: Information technology industries
Soggetto non controllato: 3D point clouds
accuracy analysis
artificial intelligence
automatic online calibration
autonomous landing
BIM
blur image restoration
camera calibration
camera networks
classification
close range photogrammetry
CNN
computer vision
computer-aided diagnosis
convolutional auto-encoders
convolutional filter
convolutional neural network
covariance
DeblurGAN
deep-learning-based motion deblurring and marker detection
distortion partition
DLT
DoF-dependent
drone
ensemble learning
facial expression recognition system
flying object detection
Hough-space
image processing
in vivo endoscopy
lens distortion
local image patch
low-cost device
machine learning
multi-scale featured local binary pattern
multi-sensor fusion
multimodal human recognition
network slimming
OCD4M
open-pit mine slope monitoring
optimum deployment
pathological site classification
plank recognition
PnP
point pair feature
portable mobile mapping system
pruning model
robotic grasping
robustness
self-assembly device
semi-direct SLAM
side-rear-view monitoring system
three-dimensional reconstruction
uncertainty
unmanned aerial vehicle
unsharp masking
vision measurement
visual-inertial
VSLAM-photogrammetric algorithm
weighted DLT
Persona (resp. second.): LeeSangyoun
KimEuntai
ParkKang Ryoung
Sommario/riassunto: This book includes 13 papers published in Special Issue ("Visual and Camera Sensors") of the journal Sensors. The goal of this Special Issue was to invite high-quality, state-of-the-art research papers dealing with challenging issues in visual and camera sensors.
Titolo autorizzato: Visual and Camera Sensors  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557360203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui