top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Computational Methods for Oncological Image Analysis
Advanced Computational Methods for Oncological Image Analysis
Autore Rundo Leonardo
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (262 p.)
Soggetto topico Medicine and Nursing
Soggetto non controllato 3D-CNN
bone scintigraphy
brain MRI image
brain tumor
brain tumor segmentation
BRATS dataset
breast cancer
breast cancer detection
breast cancer diagnosis
breast imaging
breast mass
classification
clutter rejection
computer-aided detection
contrast source inversion
dataset partition
deep learning
dimensionality reduction
ensemble classification
ensemble method
false positives reduction
feature selection
image reconstruction
imaging biomarkers
immunotherapy
incoherent imaging
interferometric optical fibers
k-means clustering
Kolmogorov-Smirnov hypothesis test
machine learning
magnetic resonance imaging
mammography
Mask R-CNN
mass detection
mass segmentation
medical imaging
melanoma detection
microwave imaging
MRgFUS
n/a
performance metrics
principal component analysis
prostate cancer
proton resonance frequency shift
radiomics
RBF neural networks
referenceless thermometry
region growing
risk assessment
segmentation
self-attention
semisupervised classification
shallow machine learning
skull stripping
statistical inference
survey
temperature variations
texture
transfer learning
tumor region
U-Net
unsupervised machine learning
Wisconsin Breast Cancer Dataset
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557353503321
Rundo Leonardo  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Sensing and Image Processing Techniques for Healthcare Applications
Advanced Sensing and Image Processing Techniques for Healthcare Applications
Autore Abolghasemi Vahid
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (258 p.)
Soggetto topico Computer science
Information technology industries
Soggetto non controllato 3D body shapes
absorption near infrared
age
anthropometry
arterial hypotension
artificial intelligence
ataxia
auditory discrimination therapy
BConvLSTM
bladder irrigation monitor
blind
body weights and measures
braille system
brain activity
brain tissue segmentation
bubble detection
cell mechanics
coherent plane-wave compounding (CPWC)
complementary subset transmit (CST)
convolutional neural network
convolutional neural networks
CT image
cycle constraint
decellularization
delay-and-sum (DAS)
delay-multiply-and-sum (DMAS)
denoising convolutional neural network
ECG
echo-planar imaging
EEG
EEG evaluation
elasticity measurement
EMG
essential tremor
event-related desynchronization
event-related synchronization
exercise
exercise habit
feature engineering
feature pyramid network
finger-nose-finger test
H&E
hemoglobin sensor
hypotension
image processing
image registration
invasive blood pressure
liver
lung
machine learning
magnetic resonance fingerprinting
magnetic resonance images
mechanical properties
multi-branch dense prediction
multi-branch output
multi-branch pooling
multi-scale feature learning
multimodal features
object detection
plane-wave (PW) imaging
postpartum period
power doppler detection
pregnancy period
ResNet-34
rigid alignment
robotic cell manipulation
segmentation
self-attention
self-supervision
semantic segmentation
signal coherence
T1 and T2* relaxation times
tinnitus
tissue engineering
tremor
U-Net
viscosity measurement
vital sign
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566486403321
Abolghasemi Vahid  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Health and Public Health Applications for Decision Support Using Machine Learning
Health and Public Health Applications for Decision Support Using Machine Learning
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2023
Descrizione fisica 1 online resource (214 p.)
Soggetto non controllato action units
adult-onset dementia
Alzheimer's disease
artificial intelligence
artificial neural network
atherosclerosis
audio visual
blood glucose
Cardiac health
ChemProt
colonies
comparison between manual and automated image segmentation
computerized diagnostic systems
convolutional neural network
COVID-19
COVID-19 detection
COVID-19 severity assessment
CPR (chemical-protein relation)
CVD classification
data selection
DDI (drug-drug interaction)
deep learning
deep neural network
diabetes
discrimination
Doppler ultrasound
ECG
emotion
ensemble learning
gait
GAT (graph-attention network)
group-based trajectory modeling
hemodynamic modeling
image processing
infected lung segmentation
internal carotid artery
largest Lyapunov exponent (LyE)
machine learning
machine-learning models
magnetic resonance imaging
Measurement uncertainty
Monte Carlo method
movement synergy
n/a
neural networks
neuromuscular control
overground walking
petri-plates
pretrained model
principal component analysis (PCA)
quantification of lung disease severity
relation extraction
risk assessment tool
RNN-LSTM
screening strategy
self-attention
signal processing
speech
stress
stroke
subclinical renal damage
T5 (text-to-text transfer transformer)
time-series forecasting
transfer learning
transformer
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910743269303321
MDPI - Multidisciplinary Digital Publishing Institute, 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Remote Sensing of the Aquatic Environments
Remote Sensing of the Aquatic Environments
Autore Carolis Giacomo De
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (292 p.)
Soggetto topico Geography
Research & information: general
Soggetto non controllato algal bloom
altimetry data
ammonia detection
aquaculture
aquaculture ponds
Arctic
CDOM absorbance
Chaohu Lake
chlorophyll
chlorophyll-a
convolutional neural network
coral reefs
Cryosat-2
deep learning
DOC
Doppler Centroid Anomaly
drone applications
drought
ecohydrology
ecological status class of lakes
empirical models
estuarial and coastal areas
European Union Water Framework Directive (2000/60/EC)
extraction
French Alps
geostationary satellite
groundwater
HAB
hydrodynamic model
hydrodynamics
inland lake
inland waters
lake level
Lake Tana
Landsat
linear spectral unmixing
MODIS
mountain temporary pools
multi-source remote sensing
multiple regression
multitemporal
NDVI
ocean color
optical data
optical fiber coating
optical remote sensing
optical sensing
Pacific lagoons
Paldang Reservoir
photogrammetry
physical limnology
Planetscope
polymer optical fibers
Rana temporaria
remote sensing
SAR
satellite
sediment
self-attention
sensors
sentinel
Sentinel-2
Sentinel-3
shallow lakes
shelf seas
spectroscopic indices
surface water
synergy
thermal infrared
turbid water
turbidity
Ulva
water hyacinth
water level
water quality parameters
waterbody temperature
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557720403321
Carolis Giacomo De  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui