top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine Learning for Energy Systems
Machine Learning for Energy Systems
Autore Sidorov Denis N
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (272 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato abnormal defects
Adaptive Neuro-Fuzzy Inference System
artificial intelligence
blockchain
blockchain technology
cast-resin transformers
classification
classification and regression trees
clustering
component accident set
cyber-physical systems
data evolution mechanism
decision tree
energy internet
energy management system
energy router
energy storage
energy systems
ensemble empirical mode decomposition
extreme learning machine
fatigue
forecasting
harmonic impedance
harmonic impedance identification
harmonic parameter
harmonic responsibility
hierarchical clustering
high permeability renewable energy
hybrid AC/DC power system
hybrid interval forecasting
industrial mathematics
information security
insulator fault forecast
integrated energy system
intelligent control
Interfacial tension
inverse problems
linear regression model
linearization
load leveling
machine learning
maintenance
monitoring data without phase angle
MOPSO algorithm
offshore wind farm
optimization
parameter estimation
partial discharge
pattern recognition
photovoltaic output power forecasting
power control
power quality
QoS index of energy flow
relevance vector machine
renewable energy source
risk assessment
rule extraction
sample entropy
scheduling optimization
smart microgrid
stochastic optimization
time series forecasting
traction network
transformer oil parameters
vacuum tank degasser
Volterra equations
Volterra models
vulnerability
wavelet packets
wind power: wind speed: T-S fuzzy model: forecasting
wind turbine
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557678803321
Sidorov Denis N  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Overcoming Data Scarcity in Earth Science
Overcoming Data Scarcity in Earth Science
Autore Etcheverry Venturini Lorena
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (94 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato 3D-Var
arthropod vector
attribute reduction
climate extreme indices (CEIs)
ClimPACT
core attribute
data assimilation
data imputation
data quality
data scarcity
Dataset Licensedatabase
decision trees
earth-science data
ensemble learning
environmental modeling
environmental observations
Expert Team on Climate Change Detection and Indices (ETCCDI)
Expert Team on Sector-specific Climate Indices (ET-SCI)
geophysical monitoring
GLDAS
invasive species
k-Nearest Neighbors
machine learning
magnetotelluric monitoring
microhabitat
missing data
multi-class classification
processing
remote sensing
rough set theory
rule extraction
soil texture calculator
species distribution modeling
statistical methods
support vector machines
water quality
ISBN 3-03928-211-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404080803321
Etcheverry Venturini Lorena  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui