top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Process Monitoring for Industry 4.0
Advanced Process Monitoring for Industry 4.0
Autore Reis Marco S
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (288 p.)
Soggetto topico Technology: general issues
Soggetto non controllato artificial generation of variability
auto machine learning
classification
combustion
condition monitoring
construction industry
continuous casting
control chart pattern
convolutional neural network
curve resolution
data augmentation
data mining
data reconciliation
decision support systems
digital processing
discriminant analysis
disruption management
disruptions
expert systems
failure mode and effects analysis (FMEA)
failure mode effects analysis
fault detection
fault diagnosis
high-dimensional data
imbalanced data
Industry 4.0
latent variables models
load identification
membrane
monitoring
multi-mode model
multi-phase residual recursive model
multiscale
multivariate data analysis
n/a
neural networks
non-intrusive load monitoring
online
optical sensors
OPTICS
pasting process
PCA
plaster production
PLS
principal component analysis
process control
process image
process monitoring
quality control
quality prediction
real-time
risk priority number
rolling bearing
semiconductor manufacturing
signal detection
Six Sigma
spatial-temporal data
spectroscopy measurements
statistical process control
statistical process monitoring
time series classification
yield improvement
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557491503321
Reis Marco S  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sensors Fault Diagnosis Trends and Applications
Sensors Fault Diagnosis Trends and Applications
Autore Witczak Piotr
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (236 p.)
Soggetto topico Technology: general issues
Soggetto non controllato acoustic emission signals
acoustic-based diagnosis
actuator and sensor fault
adaptive noise reducer
artificial neural network
attention mechanism
automotive
autonomous vehicle
bearing fault diagnosis
braking control
control valve
convolutional neural network
cryptography
decision tree
deep learning
fault detection
fault detection and diagnosis
fault detection and isolation
fault detection and isolation (FDIR)
fault diagnosis
fault identification
fault isolation
fault recovery
fault tolerant control
faults estimation
gaussian reference signal
gear fault diagnosis
gearbox fault diagnosis
hybrid kernel function
intelligent leak detection
iterative learning control
krill herd algorithm
lidar
machine learning
model predictive control
n/a
NARX
neural networks
nonlinear systems
observer design
one against on multiclass support vector machine
path tracking control
perception sensor
performance degradation
rolling bearing
scan-chain diagnosis
Shannon entropy
signature matrix
stacked auto-encoder
statistical parameters
support vector machine
SVR
Takagi-Sugeno fuzzy systems
varying rotational speed
wavelet denoising
weighting strategy
wireless sensor networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557506603321
Witczak Piotr  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui