top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Remote Sensing of Biophysical Parameters
Remote Sensing of Biophysical Parameters
Autore García-Haro Francisco Javier
Pubbl/distr/stampa Basel, : MDPI Books, 2022
Descrizione fisica 1 electronic resource (274 p.)
Soggetto topico Research & information: general
Soggetto non controllato hyperspectral
spectroscopy
equivalent water thickness
canopy water content
agriculture
EnMAP
LAI
LCC
FAPAR
FVC
CCC
PROSAIL
GPR
machine learning
active learning
Landsat 8
surface reflectance
LEDAPS
LaSRC
6SV
SREM
NDVI
artificial neural networks
canopy chlorophyll content
INFORM
leaf area index
SAIL
fluorescence
in vivo
spectrometry
ASD Field Spec
lead ions
remote sensing indices
meteosat second generation (MSG)
biophysical parameters (LAI
FAPAR)
SEVIRI
climate data records (CDR)
stochastic spectral mixture model (SSMM)
Satellite Application Facility for Land Surface Analysis (LSA SAF)
the fraction of radiation absorbed by photosynthetic components (FAPARgreen)
triple-source
leaf area index (LAI)
woody area index (WAI)
clumping index (CI)
Moderate Resolution Imaging Spectroradiometer (MODIS)
soil albedo
unmanned aircraft vehicle
multispectral sensor
vegetation indices
rapeseed crop
site-specific farming
Sentinel-2
forest
vegetation radiative transfer model
Discrete Anisotropic Radiative Transfer (DART) model
MODIS
fraction of photosynthetically active radiation absorbed by vegetation (FPAR)
three-dimensional radiative transfer model (3D RTM)
uncertainty assessment
vertical foliage profile (VFP)
terrestrial laser scanning (TLS)
airborne laser scanning (ALS)
spaceborne laser scanning (SLS)
riparian
invasive vegetation
burn severity
canopy loss
wildfire
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910595067603321
García-Haro Francisco Javier  
Basel, : MDPI Books, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Very High Resolution (VHR) Satellite Imagery: Processing and Applications
Very High Resolution (VHR) Satellite Imagery: Processing and Applications
Autore Marcello Javier
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (262 p.)
Soggetto non controllato very high-resolution Pléiades imagery
surface convergence
data augmentation
acquisition geometry
SVM classification
urban water mapping
beaver dam analogue
agriculture parcel segmentation
morphological building index
airborne hypespectral imagery
sunglint correction
water index
over-segmentation index (OSI)
High-resolution satellite imagery
multi-resolution segmentation (MRS)
GaoFen-2 (GF-2)
benthic mapping
scene classification
greenhouse extraction
edge constraint
Deformable CNN
built-up areas extraction
ultra-dense connection
seagrass
beaver mimicry
forested mountain
natural hazards
remote sensing
dimensionality reduction techniques
road extraction
landslide monitoring
Slumgullion landslide
synthetic aperture radar
building detection
Worldview-2
saliency index
under-segmentation index (USI)
texture analysis
fast marching method
video satellite
CNN
capsule
super-resolution
feature distillation
shadow detection
PrimaryCaps
semiautomatic
compensation unit
superpixels
riparian
QuickBird
submesoscale
linear unmixing
accuracy assessment
composite error index (CEI)
cyanobacteria
local feature points
Faster R-CNN
occluded object detection
error index of total area (ETA)
large displacements
threshold stability
remote sensing imagery
water column correction
canopy height model
spiral eddy
sub-pixel offset tracking
consensus
stream restoration
western Baltic Sea
Worldview
very high-resolution image
CapsNet
atmospheric correction
ISBN 3-03921-757-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Very High Resolution
Record Nr. UNINA-9910367747503321
Marcello Javier  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui