Advances in Sustainable Concrete System
| Advances in Sustainable Concrete System |
| Autore | Ling Yifeng |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (408 p.) |
| Soggetto topico |
Conservation of buildings and building materials
History of engineering and technology Technology: general issues |
| Soggetto non controllato |
acoustic emission
adhesively-bonded joint AE rate process theory age alkali-activated material artificial intelligence artificial neural networks axial load bagasse ash bamboo beam-column joint bending resistance bentonite-free drilling fluid bio-based material blast furnace ferronickel slag brittleness evaluation index cement content cementitious gravel coal gangue compound activator compressive strength concrete concrete composites concrete damage constitutive model corrosion rate crack crack depth crack width cracked concrete crumb rubber crumb rubber concrete damage evolution damage mechanism damage variable data science detergent treatment dosage of activator durability eco-friendly concrete elastic strain energy energy evolution failure criterion FE modeling FE modelling fiber-reinforced concrete filtration fly ash freeze-thaw cycle fresh properties FRP reinforced concrete slab GM (0, N) model gradation green concrete GSP high strength high temperature high-strength concrete humidity hydration hydration mechanisms lattice girder semi-precast slabs lime treatment limestone machine learning materials materials design mechanical behavior mechanical properties mechanical property microstructure minimum energy dissipation principle moisture absorption moisture desorption mortar strength multiple linear regression n/a NaOH treatment natural coarse aggregate numerical simulation optimal dosage orthogonal experiment penetrability phosphorus slag precast concrete structure pretreatment punching shear strength reactive powder concrete recycled coarse aggregate recycled concrete residual strength rheology rice husk ash sawdust self-compacting concrete SHAP silica fume steel slag powder strength sulfate and acid attacks sulphate-corrosion resistance supplementary cementitious materials sustainability sustainable concrete sustainable development synthetic polymer temperature aging three-shear energy yield criterion tortuosity two-stage concrete ultrafine metakaolin unconfined compressive strength uniaxial tension volume deformation water treatment WPFT fibers |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910580211903321 |
Ling Yifeng
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Environment-Friendly Construction Materials: Volume 1 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
| Environment-Friendly Construction Materials: Volume 1 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao |
| Autore | Hoff Inge |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (280 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
fluorescence spectrum
microstructure regeneration sensitivity analysis asphalt mixes limestone aggregates bio-oil plateau value of dissipated strain energy ratio diatomite water-leaching pretreatment fatigue performance ultra-thin wearing course recycling aggregate design optimization induction heating vibration noise consumption bitumen relaxation viscous-elastic temperature field evaluation healing agents transmittance Ca-alginate microcapsules artificially aged asphalt mixture sequencing batch Chlorella reactor waste concrete plant ash lixivium steel fiber ultra-high performance concrete titanate coupling agent SEM self-healing physical properties porous pumice thermal–mechanical properties aggregate morphology asphalt mortar adhesion energy styrene–butadiene–styrene (SBS) modified bitumen water solute exposure emulsified asphalt demulsification speed mineral-asphalt mixtures aging processes phase change materials surface texture long-term drying shrinkage contact angle aging depth asphalt calcium alginate capsules nitrogen and phosphorus removal micro-morphology rice husk ash low-temperature cement hydrophobic nanosilica asphalt mixture thickness combinations layered double hydroxide initial self-healing temperature environmentally friendly construction materials epoxidized soybean oil limestone chemical evolutions temperature sensitivity characteristics micro-surfacing cement emulsified asphalt mixture dynamic characteristics high-strength concrete flame retardant durability creep damping damage constitutive model Ultra-High Performance Concrete (UHPC) granite aggregate diatomite-modified asphalt mixture healing model asphalt combustion freeze-thaw cycle SBS-modified bitumen workability graphene flow behavior index fluidity parametrization fatigue property rankinite railway application crystallization sensitivity aqueous solute compositions pozzolanic reaction self-healing asphalt recycled material artificial neural network rheological properties molecular dynamic simulation building envelopes aluminum hydroxide crumb rubber optimization viscoelasticity building energy conservation diffusing anti-rutting agent molecular bridge engineered cementitious composites (ECC) pavement performance morphology colloidal structure hydrophilic nanosilica construction materials road engineering laboratory evaluation rejuvenator fatigue equation aggregates three-point bending fatigue test energy-based approach aggregate from sanitary ceramic wastes polyacrylic acid mastic CO2 specific surface area aggregate image measurement system solubilizer flexibility simplex lattice design SBS/CRP-modified bitumen water stability fatigue life rejuvenating systems skid-resistance reclaimed asphalt pavement rheology hydration characteristic surface energy modified asphalt materials asphalt pavement stripping test SOD tensile stresses ultraviolet radiation basalt fiber “blue-shift” polyvinyl alcohol sanitary ceramics dynamic moduli aggregate characteristics compound modify expanded graphite steel slag induced healing thermal property effective heating depth dissipated strain energy MDA mechanical behavior plateau value of permanent deformation ratio long-term field service crack healing desulphurization gypsum residues pavement failure rejuvenation interfacial transition zone combination polyethylene glycol adsorption tensile strains cold recycled asphalt mixture resistance to deformations asphalt-aggregate adhesion viscoelastic properties damage evolution carbonation microwave heating amorphous silica high-modulus asphalt mixture (HMAM) hot mix asphalt containing recycled concrete aggregate microfluidic dynamic responses concrete asphalt mastic crumb rubber powder response surface methodology nanomaterial self-compacting concrete (SCC) rutting factor X-ray computed tomography fiber modification overlay tester rubber modified asphalt ageing aged bitumen aged asphalt recycling damage characteristics dynamic tests permeation ageing resistance |
| ISBN |
9783039210138
3039210130 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346838003321 |
Hoff Inge
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Environment-Friendly Construction Materials: Volume 2 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
| Environment-Friendly Construction Materials: Volume 2 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao |
| Autore | Hoff Inge |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (256 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
fluorescence spectrum
microstructure regeneration sensitivity analysis asphalt mixes limestone aggregates bio-oil plateau value of dissipated strain energy ratio diatomite water-leaching pretreatment fatigue performance ultra-thin wearing course recycling aggregate design optimization induction heating vibration noise consumption bitumen relaxation viscous-elastic temperature field evaluation healing agents transmittance Ca-alginate microcapsules artificially aged asphalt mixture sequencing batch Chlorella reactor waste concrete plant ash lixivium steel fiber ultra-high performance concrete titanate coupling agent SEM self-healing physical properties porous pumice thermal–mechanical properties aggregate morphology asphalt mortar adhesion energy styrene–butadiene–styrene (SBS) modified bitumen water solute exposure emulsified asphalt demulsification speed mineral-asphalt mixtures aging processes phase change materials surface texture long-term drying shrinkage contact angle aging depth asphalt calcium alginate capsules nitrogen and phosphorus removal micro-morphology rice husk ash low-temperature cement hydrophobic nanosilica asphalt mixture thickness combinations layered double hydroxide initial self-healing temperature environmentally friendly construction materials epoxidized soybean oil limestone chemical evolutions temperature sensitivity characteristics micro-surfacing cement emulsified asphalt mixture dynamic characteristics high-strength concrete flame retardant durability creep damping damage constitutive model Ultra-High Performance Concrete (UHPC) granite aggregate diatomite-modified asphalt mixture healing model asphalt combustion freeze-thaw cycle SBS-modified bitumen workability graphene flow behavior index fluidity parametrization fatigue property rankinite railway application crystallization sensitivity aqueous solute compositions pozzolanic reaction self-healing asphalt recycled material artificial neural network rheological properties molecular dynamic simulation building envelopes aluminum hydroxide crumb rubber optimization viscoelasticity building energy conservation diffusing anti-rutting agent molecular bridge engineered cementitious composites (ECC) pavement performance morphology colloidal structure hydrophilic nanosilica construction materials road engineering laboratory evaluation rejuvenator fatigue equation aggregates three-point bending fatigue test energy-based approach aggregate from sanitary ceramic wastes polyacrylic acid mastic CO2 specific surface area aggregate image measurement system solubilizer flexibility simplex lattice design SBS/CRP-modified bitumen water stability fatigue life rejuvenating systems skid-resistance reclaimed asphalt pavement rheology hydration characteristic surface energy modified asphalt materials asphalt pavement stripping test SOD tensile stresses ultraviolet radiation basalt fiber “blue-shift” polyvinyl alcohol sanitary ceramics dynamic moduli aggregate characteristics compound modify expanded graphite steel slag induced healing thermal property effective heating depth dissipated strain energy MDA mechanical behavior plateau value of permanent deformation ratio long-term field service crack healing desulphurization gypsum residues pavement failure rejuvenation interfacial transition zone combination polyethylene glycol adsorption tensile strains cold recycled asphalt mixture resistance to deformations asphalt-aggregate adhesion viscoelastic properties damage evolution carbonation microwave heating amorphous silica high-modulus asphalt mixture (HMAM) hot mix asphalt containing recycled concrete aggregate microfluidic dynamic responses concrete asphalt mastic crumb rubber powder response surface methodology nanomaterial self-compacting concrete (SCC) rutting factor X-ray computed tomography fiber modification overlay tester rubber modified asphalt ageing aged bitumen aged asphalt recycling damage characteristics dynamic tests permeation ageing resistance |
| ISBN |
9783039210152
3039210157 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346837903321 |
Hoff Inge
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Environment-Friendly Construction Materials: Volume 3 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
| Environment-Friendly Construction Materials: Volume 3 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao |
| Autore | Hoff Inge |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (270 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
fluorescence spectrum
microstructure regeneration sensitivity analysis asphalt mixes limestone aggregates bio-oil plateau value of dissipated strain energy ratio diatomite water-leaching pretreatment fatigue performance ultra-thin wearing course recycling aggregate design optimization induction heating vibration noise consumption bitumen relaxation viscous-elastic temperature field evaluation healing agents transmittance Ca-alginate microcapsules artificially aged asphalt mixture sequencing batch Chlorella reactor waste concrete plant ash lixivium steel fiber ultra-high performance concrete titanate coupling agent SEM self-healing physical properties porous pumice thermal–mechanical properties aggregate morphology asphalt mortar adhesion energy styrene–butadiene–styrene (SBS) modified bitumen water solute exposure emulsified asphalt demulsification speed mineral-asphalt mixtures aging processes phase change materials surface texture long-term drying shrinkage contact angle aging depth asphalt calcium alginate capsules nitrogen and phosphorus removal micro-morphology rice husk ash low-temperature cement hydrophobic nanosilica asphalt mixture thickness combinations layered double hydroxide initial self-healing temperature environmentally friendly construction materials epoxidized soybean oil limestone chemical evolutions temperature sensitivity characteristics micro-surfacing cement emulsified asphalt mixture dynamic characteristics high-strength concrete flame retardant durability creep damping damage constitutive model Ultra-High Performance Concrete (UHPC) granite aggregate diatomite-modified asphalt mixture healing model asphalt combustion freeze-thaw cycle SBS-modified bitumen workability graphene flow behavior index fluidity parametrization fatigue property rankinite railway application crystallization sensitivity aqueous solute compositions pozzolanic reaction self-healing asphalt recycled material artificial neural network rheological properties molecular dynamic simulation building envelopes aluminum hydroxide crumb rubber optimization viscoelasticity building energy conservation diffusing anti-rutting agent molecular bridge engineered cementitious composites (ECC) pavement performance morphology colloidal structure hydrophilic nanosilica construction materials road engineering laboratory evaluation rejuvenator fatigue equation aggregates three-point bending fatigue test energy-based approach aggregate from sanitary ceramic wastes polyacrylic acid mastic CO2 specific surface area aggregate image measurement system solubilizer flexibility simplex lattice design SBS/CRP-modified bitumen water stability fatigue life rejuvenating systems skid-resistance reclaimed asphalt pavement rheology hydration characteristic surface energy modified asphalt materials asphalt pavement stripping test SOD tensile stresses ultraviolet radiation basalt fiber “blue-shift” polyvinyl alcohol sanitary ceramics dynamic moduli aggregate characteristics compound modify expanded graphite steel slag induced healing thermal property effective heating depth dissipated strain energy MDA mechanical behavior plateau value of permanent deformation ratio long-term field service crack healing desulphurization gypsum residues pavement failure rejuvenation interfacial transition zone combination polyethylene glycol adsorption tensile strains cold recycled asphalt mixture resistance to deformations asphalt-aggregate adhesion viscoelastic properties damage evolution carbonation microwave heating amorphous silica high-modulus asphalt mixture (HMAM) hot mix asphalt containing recycled concrete aggregate microfluidic dynamic responses concrete asphalt mastic crumb rubber powder response surface methodology nanomaterial self-compacting concrete (SCC) rutting factor X-ray computed tomography fiber modification overlay tester rubber modified asphalt ageing aged bitumen aged asphalt recycling damage characteristics dynamic tests permeation ageing resistance |
| ISBN |
9783039210176
3039210173 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346837803321 |
Hoff Inge
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Functional Natural-Based Polymers
| Functional Natural-Based Polymers |
| Autore | Mignon Arn |
| Descrizione fisica | 1 online resource (776 p.) |
| Soggetto topico |
Biochemistry
Biology, life sciences Research and information: general |
| Soggetto non controllato |
2-furaldehyde
3D printing 4-(2-pyridylazo)resorcinol acemannan acetylation activated carbon adhesive hydrogels adsorption aerogels agro-byproduct albumin deposition alginate aloe vera alpha cellulose ammonia oxidase gene anionic hydrogel anisotropy annealing anti-adhesion anti-inflammatory antibacterial activity antibacterial potential antimicrobial antimicrobial activities antimicrobial activity aqueous medium Asphodelaceae Bacillus amyloliquefaciens Bacillus licheniformis bacterial cellulose banana peel bio-based polyurethanes biochemistry bioconversion biodegradable polymers biopolymers biosorbent birch wood blood circulation Box-Behnken design Cactaceae carboxymethyl cellulose cellulose cellulose acetate cellulose derivatives cellulose paper cellulose-citrate cellulose-derived polyol chemical modification chicken feet chitinase chitinous fishery wastes chitosan circular dichroism CNC Co NPs cold plasma coating collagen CoNi nanocomposite contact lens conventional fillers copper crab shells crosslinking crystallization customization cytotoxicity date palm trunk mesh decolorization decomposition mechanism degradation dielectric properties dissolution DoE double-cross-linked networks electron irradiation electrospinning elongation at break emulsion capacity enhanced strain esterification reaction ethylene glycol europium extraction optimization extrusion flexor tendon repair flocculant food applications food packaging food quality free radical polymerization FTIR functionalized materials gelatine glutaraldehyde glycerol graft copolymerization graphene oxide hyaluronic acid hydrogel hydrogels hydrophobic modification hydrophobization injection molding ionic conductivity Komagataeibacter laccase latex light conversion film lignin lignocellulose lignocellulosic fibers lignocellulosic waste lubricant lyophilization Malva parviflora mechanical characterization mechanical properties melanin melt processing methacryloyl mucin methylene blue microbial infections microflora N cycle Mimosa pudica mucilage MnO2 model studies mucilage N-acetyl-D-glucosamine nanocellulose nanocomposite nanocomposites nanofertilizer nanofibers nanohydrogel nanomaterials nanoparticles natural mediators natural polymers natural rubber neural network nisin NO-donor nutrient use efficiency oil palm biomass waste Opuntia ficus-indica Paenibacillus pectin pectin polysaccharide pectinase peptides pH and rumen temperature pH-responsive on-off switching phenol physicochemical properties poly(3-hydroxybutyrate-co-3-hydroxyhexanoate poly(lactic acid) polyethylene oxide polyhydroxyalkanoates polymer electrolyte polymer-based constructs polymeric matrices polysaccharide polyurethane composites pomelo albedo porcine gastric mucin pore structure potato starch pre-treatment prebiotics prepolymers process parameter protozoa pyrolysis quantitative polymerase chain reaction quantum dot release model response surface methodology rheology rice husk ash salt crosslinking agent semisynthetic polymers sensitization sensorial quality slow release soil N content specified risk materials stability stretchable bacterial cellulose sucrolytic superabsorbent surface modification surface plasmon resonance surface roughness swelling tannin tensile test thermal degradation kinetics thermal properties thin film topical release tribology vitamin C water-retaining agent wheat bran wound dressings wound healing X-ray photoelectron spectroscopy zero valent iron zero-order release |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910595079003321 |
Mignon Arn
|
||
| Lo trovi qui: Univ. Federico II | ||
| ||
Valorization of Residues from Energy Conversion of Biomass for Advanced and Sustainable Material Applications
| Valorization of Residues from Energy Conversion of Biomass for Advanced and Sustainable Material Applications |
| Autore | Enke Dirk |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (212 p.) |
| Soggetto topico | Technology: general issues |
| Soggetto non controllato |
acid leaching
agricultural byproduct alkaline leaching ash bio-based material biochar biogas biogenic amorphous silica biomass biomethane biorefinery bottom-up process capacitance carbon nanotubes cellulose cellulose crystals co-combustion continuous process de-ashing decolorization energy recovery engineered particle EU ETS exhausted grape marc fertilizer German fertilizer legislation GHG mitigation costs green chemistry greenhouse gas emissions heat and power plants heavy metals high moisture content lifecycle assessment maize leaves maize straw manure methylene blue mitigation potential mono-combustion multi-objectives RSM municipal sewage sludge n/a nano-silica nanosilica nitrogen conversion nutrients phosphorus recovery pyrolysis RED II renewable material rice husk rice husk ash rice straw SDGs silica silica extraction smoldering soil amendment specific surface area sugarcane bagasse sugarcane fiber sugarcane leaves sugarcane pith sustainable material techno-economic analysis valorization waste wood ash zero waste generation |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910576887503321 |
Enke Dirk
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||