Learning to Understand Remote Sensing Images . Volume 2 |
Autore | Wang Qi |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
Descrizione fisica | 1 electronic resource (363 pages) |
Soggetto non controllato |
metadata
image classification sensitivity analysis ROI detection residual learning image alignment adaptive convolutional kernels Hough transform class imbalance land surface temperature inundation mapping multiscale representation object-based convolutional neural networks scene classification morphological profiles hyperedge weight estimation hyperparameter sparse representation semantic segmentation vehicle classification flood Landsat imagery target detection multi-sensor building damage detection optimized kernel minimum noise fraction (OKMNF) sea-land segmentation nonlinear classification land use SAR imagery anti-noise transfer network sub-pixel change detection Radon transform segmentation remote sensing image retrieval TensorFlow convolutional neural network particle swarm optimization optical sensors machine learning mixed pixel optical remotely sensed images object-based image analysis very high resolution images single stream optimization ship detection ice concentration online learning manifold ranking dictionary learning urban surface water extraction saliency detection spatial attraction model (SAM) quality assessment Fuzzy-GA decision making system land cover change multi-view canonical correlation analysis ensemble land cover semantic labeling sparse representation dimensionality expansion speckle filters hyperspectral imagery fully convolutional network infrared image Siamese neural network Random Forests (RF) feature matching color matching geostationary satellite remote sensing image change feature analysis road detection deep learning aerial images image segmentation aerial image multi-sensor image matching HJ-1A/B CCD endmember extraction high resolution multi-scale clustering heterogeneous domain adaptation hard classification regional land cover hypergraph learning automatic cluster number determination dilated convolution MSER semi-supervised learning gate Synthetic Aperture Radar (SAR) downscaling conditional random fields urban heat island hyperspectral image remote sensing image correction skip connection ISPRS spatial distribution geo-referencing Support Vector Machine (SVM) very high resolution (VHR) satellite image classification ensemble learning synthetic aperture radar conservation convolutional neural network (CNN) THEOS visible light and infrared integrated camera vehicle localization structured sparsity texture analysis DSFATN CNN image registration UAV unsupervised classification SVMs SAR image fuzzy neural network dimensionality reduction GeoEye-1 feature extraction sub-pixel energy distribution optimizing saliency analysis deep convolutional neural networks sparse and low-rank graph hyperspectral remote sensing tensor low-rank approximation optimal transport SELF spatiotemporal context learning Modest AdaBoost topic modelling multi-seasonal Segment-Tree Filtering locality information GF-4 PMS image fusion wavelet transform hashing machine learning techniques satellite images climate change road segmentation remote sensing tensor sparse decomposition Convolutional Neural Network (CNN) multi-task learning deep salient feature speckle canonical correlation weighted voting fully convolutional network (FCN) despeckling multispectral imagery ratio images linear spectral unmixing hyperspectral image classification multispectral images high resolution image multi-objective convolution neural network transfer learning 1-dimensional (1-D) threshold stability Landsat kernel method phase congruency subpixel mapping (SPM) tensor MODIS GSHHG database compressive sensing |
ISBN | 3-03897-699-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910367755503321 |
Wang Qi
![]() |
||
MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Learning to Understand Remote Sensing Images . Volume 1 |
Autore | Wang Qi |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
Descrizione fisica | 1 electronic resource (414 pages) |
Soggetto non controllato |
metadata
image classification sensitivity analysis ROI detection residual learning image alignment adaptive convolutional kernels Hough transform class imbalance land surface temperature inundation mapping multiscale representation object-based convolutional neural networks scene classification morphological profiles hyperedge weight estimation hyperparameter sparse representation semantic segmentation vehicle classification flood Landsat imagery target detection multi-sensor building damage detection optimized kernel minimum noise fraction (OKMNF) sea-land segmentation nonlinear classification land use SAR imagery anti-noise transfer network sub-pixel change detection Radon transform segmentation remote sensing image retrieval TensorFlow convolutional neural network particle swarm optimization optical sensors machine learning mixed pixel optical remotely sensed images object-based image analysis very high resolution images single stream optimization ship detection ice concentration online learning manifold ranking dictionary learning urban surface water extraction saliency detection spatial attraction model (SAM) quality assessment Fuzzy-GA decision making system land cover change multi-view canonical correlation analysis ensemble land cover semantic labeling sparse representation dimensionality expansion speckle filters hyperspectral imagery fully convolutional network infrared image Siamese neural network Random Forests (RF) feature matching color matching geostationary satellite remote sensing image change feature analysis road detection deep learning aerial images image segmentation aerial image multi-sensor image matching HJ-1A/B CCD endmember extraction high resolution multi-scale clustering heterogeneous domain adaptation hard classification regional land cover hypergraph learning automatic cluster number determination dilated convolution MSER semi-supervised learning gate Synthetic Aperture Radar (SAR) downscaling conditional random fields urban heat island hyperspectral image remote sensing image correction skip connection ISPRS spatial distribution geo-referencing Support Vector Machine (SVM) very high resolution (VHR) satellite image classification ensemble learning synthetic aperture radar conservation convolutional neural network (CNN) THEOS visible light and infrared integrated camera vehicle localization structured sparsity texture analysis DSFATN CNN image registration UAV unsupervised classification SVMs SAR image fuzzy neural network dimensionality reduction GeoEye-1 feature extraction sub-pixel energy distribution optimizing saliency analysis deep convolutional neural networks sparse and low-rank graph hyperspectral remote sensing tensor low-rank approximation optimal transport SELF spatiotemporal context learning Modest AdaBoost topic modelling multi-seasonal Segment-Tree Filtering locality information GF-4 PMS image fusion wavelet transform hashing machine learning techniques satellite images climate change road segmentation remote sensing tensor sparse decomposition Convolutional Neural Network (CNN) multi-task learning deep salient feature speckle canonical correlation weighted voting fully convolutional network (FCN) despeckling multispectral imagery ratio images linear spectral unmixing hyperspectral image classification multispectral images high resolution image multi-objective convolution neural network transfer learning 1-dimensional (1-D) threshold stability Landsat kernel method phase congruency subpixel mapping (SPM) tensor MODIS GSHHG database compressive sensing |
ISBN | 3-03897-685-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910367755603321 |
Wang Qi
![]() |
||
MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS) |
Autore | Tang Bo |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
Descrizione fisica | 1 electronic resource (344 p.) |
Soggetto non controllato |
FPGA
recurrence plot (RP) residual learning neural networks driver monitoring navigation depthwise separable convolution optimization dynamic path-planning algorithms object tracking sub-region cooperative systems convolutional neural networks DSRC VANET joystick road scene convolutional neural network (CNN) multi-sensor p-norm occlusion crash injury severity prediction deep leaning squeeze-and-excitation electric vehicles perception in challenging conditions T-S fuzzy neural network total vehicle mass of the front vehicle electrocardiogram (ECG) communications generative adversarial nets camera adaptive classifier updating Vehicle-to-X communications convolutional neural network predictive Geobroadcast infinity norm urban object detector machine learning automated-manual transition red light-running behaviors photoplethysmogram (PPG) panoramic image dataset parallel architectures visual tracking autopilot ADAS kinematic control GPU road lane detection obstacle detection and classification Gabor convolution kernel autonomous vehicle Intelligent Transport Systems driving decision-making model Gaussian kernel autonomous vehicles enhanced learning ethical and legal factors kernel based MIL algorithm image inpainting fusion terrestrial vehicle driverless drowsiness detection map generation object detection interface machine vision driving assistance blind spot detection deep learning relative speed autonomous driving assistance system discriminative correlation filter bank recurrent neural network emergency decisions LiDAR real-time object detection vehicle dynamics path planning actuation systems maneuver algorithm autonomous driving smart band the emergency situations two-wheeled support vector machine model global region biological vision automated driving |
ISBN | 3-03921-376-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Machine Learning and Embedded Computing in Advanced Driver Assistance Systems |
Record Nr. | UNINA-9910367757403321 |
Tang Bo
![]() |
||
MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Machine Learning for Biomedical Application |
Autore | Strzelecki Michał |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (198 p.) |
Soggetto topico | Research & information: general |
Soggetto non controllato |
depthwise separable convolution (DSC)
all convolutional network (ACN) batch normalization (BN) ensemble convolutional neural network (ECNN) electrocardiogram (ECG) MIT-BIH database cephalometric landmark X-ray deep learning ResNet registration electronic human-machine interface blindness gesture recognition inertial sensors IMU dynamic contrast-enhanced MRI kidney perfusion glomerular filtration rate pharmacokinetic modeling multi-layer perceptron parameter estimation instance segmentation computer vision retinal blood vessel image computer-aided diagnosis U-shaped neural network residual learning semantic gap intracranial hemorrhage computed tomography random forest sleep disorder obstructive sleep disorder overnight polysomnogram EEG EMG ECG HRV signals Electronic Medical Record (EMR) disease prediction Amyotrophic Lateral Sclerosis (ALS) weighted Jaccard index (WJI) lung cancer CT images CNN pulmonary fibrosis radiotherapy |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910566475403321 |
Strzelecki Michał
![]() |
||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|