top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational Aerodynamic Modeling of Aerospace Vehicles
Computational Aerodynamic Modeling of Aerospace Vehicles
Autore Jenkins Karl
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (294 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato aerodynamic performance
aerodynamics
aeroelasticity
after-body
angle of attack
bifurcation
bluff body
CFD
characteristics-based scheme
chemistry
computational fluid dynamics
computational fluid dynamics (CFD)
convolution integral
CPACS
DDES
detection
discontinuous Galerkin finite element method (DG-FEM)
dynamic Smagorinsky subgrid-scale model
Euler
flexible wings
flow control
flow distortion
fluid mechanics
flutter
formation
gasdynamics
geometry
Godunov method
high angles of attack
hybrid reduced-order model
hypersonic
installed propeller
kinetic energy dissipation
large eddy simulation
MDO
meshing
microelectromechanical systems (MEMS)
microfluidics
modeling
modified equation analysis
multi-directional
multi-fidelity
MUSCL
neural networks
numerical dissipation
numerical methods
overset grid approach
p-factor
quasi-analytical
RANS
reduced order aerodynamic model
reduced-order model
Riemann solver
S-duct diffuser
sharp-edge gust
shock-channel
slender-body
square cylinder
subsonic
Taylor-Green vortex
truncation error
turbulence model
unsteady aerodynamic characteristics
URANS
variable fidelity
VLM
vortex generators
wake
wind gust responses
wind tunnel
wing-propeller aerodynamic interaction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346677003321
Jenkins Karl  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics / Felix Fritzen, David Ryckelynck
Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics / Felix Fritzen, David Ryckelynck
Autore Fritzen Felix
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (254 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato supervised machine learning
proper orthogonal decomposition (POD)
PGD compression
stabilization
nonlinear reduced order model
gappy POD
symplectic model order reduction
neural network
snapshot proper orthogonal decomposition
3D reconstruction
microstructure property linkage
nonlinear material behaviour
proper orthogonal decomposition
reduced basis
ECSW
geometric nonlinearity
POD
model order reduction
elasto-viscoplasticity
sampling
surrogate modeling
model reduction
enhanced POD
archive
modal analysis
low-rank approximation
computational homogenization
artificial neural networks
unsupervised machine learning
large strain
reduced-order model
proper generalised decomposition (PGD)
a priori enrichment
elastoviscoplastic behavior
error indicator
computational homogenisation
empirical cubature method
nonlinear structural mechanics
reduced integration domain
model order reduction (MOR)
structure preservation of symplecticity
heterogeneous data
reduced order modeling (ROM)
parameter-dependent model
data science
Hencky strain
dynamic extrapolation
tensor-train decomposition
hyper-reduction
empirical cubature
randomised SVD
machine learning
inverse problem plasticity
proper symplectic decomposition (PSD)
finite deformation
Hamiltonian system
DEIM
GNAT
ISBN 9783039214105
3039214101
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367759403321
Fritzen Felix  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Methods in Computational Biology / Ross Carlson, Herbert Sauro
Methods in Computational Biology / Ross Carlson, Herbert Sauro
Autore Carlson Ross
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (214 p.)
Soggetto topico Information technology industries
Soggetto non controllato inosine
immune checkpoint inhibitor
geometric singular perturbation theory
simulation
BioModels Database
ADAR
calcium current
bifurcation analysis
bacterial biofilms
nonlinear dynamics
explanatory model
turning point bifurcation
oscillator
workflow
bioreactor integrated modeling
modeling methods
elementary flux modes visualization
multiscale systems biology
evolutionary algorithm
metabolic model
differential evolution
reduced-order model
computational model
gut microbiota dysbiosis
canard-induced EADs
computational biology
metabolic modelling
methods
SREBP-2
mechanistic model
systems modeling
biological networks
macromolecular composition
provenance
flux balance analysis
immunotherapy
compartmental modeling
immuno-oncology
metabolic network visualization
mechanism
bistable switch
Clostridium difficile infection
bioreactor operation optimization
microRNA targeting
CFD simulation
biomass reaction
RNA editing
ordinary differential equation
metabolic modeling
mass-action networks
hybrid model
multiple time scales
quantitative systems pharmacology (QSP)
mathematical modeling
microRNA
cancer
parameter optimization
Hopf bifurcation
breast
ISBN 9783039211647
3039211641
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346689103321
Carlson Ross  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Fluid Dynamics
Statistical Fluid Dynamics
Autore Ammar Amine
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (174 p.)
Soggetto topico History of engineering and technology
Materials science
Technology: general issues
Soggetto non controllato Carreau nanofluid
concentrated suspensions
data-driven model
diffuse approximation
diffuse interface
discrete numerical simulation
domain reconstruction
energy dissipation
flow around circular cylinders
flow induced orientation
flow simulation
graphene nano-powder
Hausdorff distance
interval-pooled stepped spillway
liquid-liquid interface
lubrication effect
manifold learning
microcapsule suspension
microstructure generation
mixture model
model order reduction
molecular dynamics
n/a
nanoparticle two-phase flow
nanoparticles
Navier-Stokes equation
numerical simulation
octree optimization
omega identification method
particle coagulation and breakage
particle distribution
permeability computing
phase field method
Poisson equation
porous media approach
proper orthogonal decomposition
Proper Orthogonal Decomposition (POD)
reduced-order model
reinforced polymers
rheological behavior
shear rate
singularity
steam generator
thermal nanofluid
topological data analysis (TDA)
transitional flow
turbulence
Vallejo law
void fraction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910585935403321
Ammar Amine  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui