Application of Nanoparticles for Oil Recovery
| Application of Nanoparticles for Oil Recovery |
| Autore | Torsaeter Ole |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (145 p.) |
| Soggetto topico | Technology: general issues |
| Soggetto non controllato |
biopolymer
cellulose nanocrystals chemical flooding CO2 EOR CO2 mobility control contact angle core flood crude oil enhanced oil recovery EOR foam formation rheological characteristics interfacial tension mathematical model mercury injection capillary pressure microfluidics n/a nanocellulose nanomaterials nanoparticle nanoparticle agglomeration nanoparticle stability nanoparticle-stabilized emulsion and flow diversion nanoparticles nanoparticles stability nanotechnology for EOR polymer concentration polymer flooding polymer-coated nanoparticles pore throat size distribution recovery factor reservoir condition reservoir rock silica nanoparticles surfactant TEMPO-oxidized cellulose nanofibrils wettability alteration |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557372603321 |
Torsaeter Ole
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Clean Energy and Fuel (Hydrogen) Storage / Sesha Srinivasan, Elias Stefanakos
| Clean Energy and Fuel (Hydrogen) Storage / Sesha Srinivasan, Elias Stefanakos |
| Autore | Srinivasan Sesha |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (278 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
MgH2
vertically oriented graphene gas loss concentrated solar power (CSP) complex hydrides PCM roof hydrogen storage systems slag bubbles transportation dye-sensitized solar cells undercooling methanogenesis electrochemical energy storage hydrogen storage Fischer–Tropsch state of charge estimator gas turbine engine simplified electrochemical model hot summer and cold winter area rock permeability flutter instability charge density binder salt cavern energy storage battery energy storage system capacitance LiNH2 ball milling production rate leaching tubing quality function deployment (QFD) nanocatalyst lab-scale thermal energy storage (TES) comprehensive incremental benefit lean direct injection Li-ion batteries separator four-point salt cavern low emissions combustion ionic liquid carbon materials nanocomposite materials electrical double layers recovery factor thermochemical energy storage Klinkenberg method flow-induced vibration cathode porous media metal hydride aquifer size diffusion auxiliary services compensation water invasion conjugate phase change heat transfer heat transfer enhancement failure mode and effect analysis (FMEA) magnetism carbonate gas reservoirs equivalent loss of cycle life internal and reverse external axial flows thermal energy storage lithium-ion batteries bacterial sulfate reduction crystal growth rates optimal capacity gas storage energy discharge anode Ag nanoparticles regenerator hydrogen absorption freestanding TiO2 nanotube arrays material science extended kalman filter reactive transport modeling synthetic rock salt testing hydrogen energy storage lattice Boltzmann method dynamic modeling bubbles burst Power to Liquid large-scale wind farm PHREEQC |
| ISBN |
9783039216314
3039216317 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910367752503321 |
Srinivasan Sesha
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Colloids and Interfaces in Oil Recovery / Spencer Taylor
| Colloids and Interfaces in Oil Recovery / Spencer Taylor |
| Autore | Taylor Spencer |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (234 p.) |
| Soggetto non controllato |
multicomponent ion exchange
alcohols polymer-enhanced foam low salinity waterflooding heavy oil cyclodextrins SAGD nanoparticle fluids CO2 foam in-situ rheology surfactants Pickering emulsions enhanced oil recovery emulsions inclusion complexes petroleum Bacillus halodurans non-Newtonian flow in porous medium oil recovery Bacillus firmus oil film displacement surface and interfacial tension naphthenic acid Microbial Enhanced Oil Recovery recovery factor thermal recovery heavy oil and bitumen SAG colloid and interfacial science metal ion interactions porous media optical video microscopy microfluidics spore forming bacteria interfacial complexation electric double layer dynamic interfacial tension polymer flooding wettability polymers fluid-fluid interactions interfaces waterflooding oil sands EOR contact angles wettability alteration biotransformation monolayer asphaltene petroleum colloids surface charge heavy oil recovery |
| ISBN |
9783039211074
3039211072 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346843003321 |
Taylor Spencer
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Flow and Transport Properties of Unconventional Reservoirs 2018 / Jianchao Cai, Harpreet Singh, Zhien Zhang, Qinjun Kang
| Flow and Transport Properties of Unconventional Reservoirs 2018 / Jianchao Cai, Harpreet Singh, Zhien Zhang, Qinjun Kang |
| Autore | Cai Jianchao |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (364 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
shale gas
permeability prediction by NMR logs matrix–fracture interaction faults remaining oil distributions unconventional reservoirs coal deformation reservoir depletion carbonate reservoir nanopore fracturing fluid pseudo-potential model shale reservoirs matrix-fracture interactions multi-scale fracture succession pseudo-steady state (SPSS) method fluid transport physics integrated methods chelating agent dissolved gas non-equilibrium permeability effective stress fractal fracture network spontaneous imbibition tight oil porous media 0-1 programming the average flow velocity geothermal water micro-fracture pore types pore network model petrophysical characterization nitrogen adsorption analysis of influencing factors mudstone rheology velocity profile shale permeability flow resistance global effect tight sandstones fractal dimension contact angle temperature-resistance fractured well transient productivity reservoir classifications deep circulation groundwater viscosity NMR fractional diffusion lattice Boltzmann method multiporosity and multiscale fractal geometry imbibition front productivity contribution degree of multimedium wetting angle pH of formation water enhanced oil recovery isotopes tight sandstone fracture diversion shale SRV-fractured horizontal well low-salinity water flooding shale gas reservoir tight reservoirs fracture continuum method tight oil reservoir Lucaogou Formation hydraulic fracturing clean fracturing fluid recovery factor flow regimes local effect complex fracture network pore structure gas adsorption capacity polymer non-linear flow conformable derivative production simulation analytical model enhanced geothermal system multi-scale flow experimental evaluation extended finite element method fluid-solid interaction groundwater flow well-placement optimization thickener imbibition recovery equilibrium permeability slip length large density ratio clay mineral composition finite volume method volume fracturing influential factors sulfonate gemini surfactant |
| ISBN |
9783039211173
303921117X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346689503321 |
Cai Jianchao
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fundamentals of Enhanced Oil Recovery
| Fundamentals of Enhanced Oil Recovery |
| Autore | Kremieniewski Marcin |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (268 p.) |
| Soggetto topico |
History of engineering & technology
Technology: general issues |
| Soggetto non controllato |
acid gas
acid gas migration acid gas reinjection adhesion aggressive natural gas components annular space borehole cleaning borehole sealing efficiency bottomhole sampling capillarity carbonate reservoir cement sheath cement slurry cement stone cementing chrome coating cleaning the borehole cluster analysis CO2 CO2 and H2S geological sequestration corrosion resistance drilling fluids drilling mud emulsifier emulsion stability enhanced oil recovery enzymes EOR filter cake fine-grained material formation permeability gas and water chemical analysis gas migration gas outflows gas production gas well ranking gas-water-oil mixture genetic programming genetic type of kerogen high temperature on corrosion of mining pipes high-nitrogen natural gas improved borehole sealing improving the sealing of the borehole invert drilling fluid isotopic composition jet pump L80-1 steel leakage risk analysis mechanical parameters mud cake n/a nanosilica oil oil gas oil phase oil-based mud oxidants pore scale rational selection of drilling fluids recovery factor shale gas soil gas analysis spacer fluid sucker-rod pump technological parameters total organic carbon (TOC) unconventional resources viscosity WAG wash wash contact time water water alternating gas water flooding water phase water shut-off treatment water-gas ratio (WGR) well well cementing well logging data quality and quantity interpretation |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910585938103321 |
Kremieniewski Marcin
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||