top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Hyperspectral Imaging and Applications
Hyperspectral Imaging and Applications
Autore Chang Chein-I
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (632 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato biodiversity
peatland
vegetation type
classification
hyperspectral
in situ measurements
hyperspectral image (HSI)
multiscale union regions adaptive sparse representation (MURASR)
multiscale spatial information
imaging spectroscopy
airborne laser scanning
minimum noise fraction
class imbalance
Africa
agroforestry
tree species
hyperspectral unmixing
endmember extraction
band selection
spectral variability
prototype space
ensemble learning
rotation forest
semi-supervised local discriminant analysis
optical spectral region
thermal infrared spectral region
mineral mapping
data integration
HyMap
AHS
raw material
remote sensing
nonnegative matrix factorization
data-guided constraints
sparseness
evenness
hashing ensemble
hierarchical feature
hyperspectral classification
band expansion process (BEP)
constrained energy minimization (CEM)
correlation band expansion process (CBEP)
iterative CEM (ICEM)
nonlinear band expansion (NBE)
Otsu’s method
sparse unmixing
local abundance
nuclear norm
hyperspectral detection
target detection
sprout detection
constrained energy minimization
iterative algorithm
adaptive window
hyperspectral imagery
recursive anomaly detection
local summation RX detector (LS-RXD)
sliding window
band selection (BS)
band subset selection (BSS)
hyperspectral image classification
linearly constrained minimum variance (LCMV)
successive LCMV-BSS (SC LCMV-BSS)
sequential LCMV-BSS (SQ LCMV-BSS)
vicarious calibration
reflectance-based method
irradiance-based method
Dunhuang site
90° yaw imaging
terrestrial hyperspectral imaging
vineyard
water stress
machine learning
tree-based ensemble
progressive sample processing (PSP)
real-time processing
image fusion
hyperspectral image
panchromatic image
structure tensor
image enhancement
weighted fusion
spectral mixture analysis
fire severity
AVIRIS
deep belief networks
deep learning
texture feature enhancement
band grouping
hyperspectral compression
lossy compression
on-board compression
orthogonal projections
Gram–Schmidt orthogonalization
parallel processing
anomaly detection
sparse coding
KSVD
hyperspectral images (HSIs)
SVM
composite kernel
algebraic multigrid methods
hyperspectral pansharpening
panchromatic
intrinsic image decomposition
weighted least squares filter
spectral-spatial classification
label propagation
superpixel
semi-supervised learning
rolling guidance filtering (RGF)
graph
deep pipelined background statistics
high-level synthesis
data fusion
data unmixing
hyperspectral imaging
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910585941603321
Chang Chein-I  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Principles and Applications of Data Science
Principles and Applications of Data Science
Autore Liu Chuan-Ming
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (168 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato deep learning
user preference learning
feature fusion
similar user recommendation
convolutional neural network
image classification
electronic health records
fair exchange
forward secrecy
raw material
mining
terminology
dictionary
terminology application
mobile application
digitization
lexical data
corpus data
linguistic linked open data
neuro-fuzzy
prediction model
air pollution
PM2.5
PM10
self-attention mechanism
graph neural network
data mining
behaviour sequence pattern
behaviour network
water crystal
fine-tuning
supervised
classification
combined classification model
deep transfer learning
focal-segmental
kidney disease
kidney glomeruli
medical image
sclerosed glomeruli
predictive analytics
Internet of Things
peasant farming
smart farming system
crop production prediction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910580211103321
Liu Chuan-Ming  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui