Iterative Methods for Solving Nonlinear Equations and Systems |
Autore | Soleymani Fazlollah |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
Descrizione fisica | 1 electronic resource (494 p.) |
Soggetto non controllato |
Lipschitz condition
heston model rectangular matrices computational efficiency Hull–White order of convergence signal and image processing dynamics divided difference operator engineering applications smooth and nonsmooth operators Newton-HSS method higher order method Moore–Penrose asymptotic error constant multiple roots higher order efficiency index multiple-root finder computational efficiency index Potra–Pták method nonlinear equations system of nonlinear equations purely imaginary extraneous fixed point attractor basin point projection fixed point theorem convex constraints weight function radius of convergence Frédholm integral equation semi-local convergence nonlinear HSS-like method convexity accretive operators Newton-type methods multipoint iterations banach space Kantorovich hypothesis variational inequality problem Newton method semilocal convergence least square problem Fréchet derivative Newton’s method iterative process Newton-like method Banach space sixteenth-order optimal convergence nonlinear systems Chebyshev–Halley-type Jarratt method iteration scheme Newton’s iterative method basins of attraction drazin inverse option pricing higher order of convergence non-linear equation numerical experiment signal processing optimal methods rate of convergence n-dimensional Euclidean space non-differentiable operator projection method Newton’s second order method intersection planar algebraic curve Hilbert space conjugate gradient method sixteenth order convergence method Padé approximation optimal iterative methods error bound high order Fredholm integral equation global convergence iterative method integral equation ?-continuity condition systems of nonlinear equations generalized inverse local convergence iterative methods multi-valued quasi-nonexpasive mappings R-order finite difference (FD) nonlinear operator equation basin of attraction PDE King’s family Steffensen’s method nonlinear monotone equations Picard-HSS method nonlinear models the improved curvature circle algorithm split variational inclusion problem computational order of convergence with memory multipoint iterative methods Kung–Traub conjecture multiple zeros fourth order iterative methods parametric curve optimal order nonlinear equation |
ISBN | 3-03921-941-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910367739103321 |
Soleymani Fazlollah | ||
MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Symmetry in Complex Systems |
Autore | Machado J. A. Tenreiro |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (118 p.) |
Soggetto topico | History of engineering & technology |
Soggetto non controllato |
multi-agent system (MAS)
reinforcement learning (RL) mobile robots function approximation Opportunistic complex social network cooperative neighbor node probability model social relationship adapted PageRank algorithm PageRank vector networks centrality multiplex networks biplex networks divided difference radius of convergence Kung–Traub method local convergence Lipschitz constant Banach space fractional calculus Caputo derivative generalized Fourier law Laplace transform Fourier transform Mittag–Leffler function non-Fourier heat conduction Mei symmetry conserved quantity adiabatic invariant quasi-fractional dynamical system non-standard Lagrangians complex systems symmetry-breaking bifurcation theory complex networks nonlinear dynamical systems |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557292103321 |
Machado J. A. Tenreiro | ||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|