top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence-Based Learning Approaches for Remote Sensing
Artificial Intelligence-Based Learning Approaches for Remote Sensing
Autore Jeon Gwanggil
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (382 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Environmental science, engineering & technology
Soggetto non controllato pine wilt disease dataset
GIS application visualization
test-time augmentation
object detection
hard negative mining
video synthetic aperture radar (SAR)
moving target
shadow detection
deep learning
false alarms
missed detections
synthetic aperture radar (SAR)
on-board
ship detection
YOLOv5
lightweight detector
remote sensing image
spectral domain translation
generative adversarial network
paired translation
synthetic aperture radar
ship instance segmentation
global context modeling
boundary-aware box prediction
land-use and land-cover
built-up expansion
probability modelling
landscape fragmentation
machine learning
support vector machine
frequency ratio
fuzzy logic
artificial intelligence
remote sensing
interferometric phase filtering
sparse regularization (SR)
deep learning (DL)
neural convolutional network (CNN)
semantic segmentation
open data
building extraction
unet
deeplab
classifying-inversion method
AIS
atmospheric duct
ship detection and classification
rotated bounding box
attention
feature alignment
weather nowcasting
ResNeXt
radar data
spectral-spatial interaction network
spectral-spatial attention
pansharpening
UAV visual navigation
Siamese network
multi-order feature
MIoU
imbalanced data classification
data over-sampling
graph convolutional network
semi-supervised learning
troposcatter
tropospheric turbulence
intercity co-channel interference
concrete bridge
visual inspection
defect
deep convolutional neural network
transfer learning
interpretation techniques
weakly supervised semantic segmentation
ISBN 3-0365-6084-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910639984703321
Jeon Gwanggil  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Optimizations for Machine Learning
Computational Optimizations for Machine Learning
Autore Gabbay Freddy
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (276 p.)
Soggetto topico Mathematics & science
Research & information: general
Soggetto non controllato ARIMA model
artificial intelligence
autoencoders
bed roughness
bio-inspired algorithms
CNN architecture
computational intelligence
convolutional neural network
deep compression
deep learning
deep neural networks
DNN
energy dissipation
evolution of weights
evolutionary algorithms
evolutionary computation
feature selection
floating-point numbers
FLOW-3D
generalization error
genetic algorithms
hardware acceleration
Heating, Ventilation and Air Conditioning (HVAC)
hydraulic jumps
low power
machine learning
meta-heuristic optimization
metaheuristics search
model predictive control
multi-objective optimization
nature inspired algorithms
neural networks
nonlinear systems
online model selection
online optimization
precipitation nowcasting
quantization
radar data
recurrent neural networks
ReLU
sensitivity analysis
smart building
soft computing
swarm intelligence
time series analysis
training
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557610303321
Gabbay Freddy  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Process Modeling in Pyrometallurgical Engineering
Process Modeling in Pyrometallurgical Engineering
Autore Saxen Henrik
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (642 p.)
Soggetto topico Technology: general issues
Soggetto non controllato 3D molecular model
adaptive finite differences
analysis tool
angle of repose
apparent activation energy
arrhenius equation
arsenate
arsenic recovery
arsenic removal
arsenopyrite
artificial intelligence
basic oxygen furnace
biomass
blast furnace
blast furnace hearth
BOS reactor
bubble motion
burden distribution
burden layer structure
burden pile width
C-H2 smelting reduction furnace
carbon solution loss
CFD
CFD-DEM
charcoal combustion rate
charging system
coalescence
coke
coke bed
coke combustion rate
combustion
computational fluid dynamics
computational fluid dynamics (CFD)
conjugate heat transfer
coordination number
copper smelter
copper smelting
COREX
COREX melter gasifier
coupling effect
Cr2O3
crystal size
dead man
decarburization
DEM
dimensional analysis
Discrete Element Method
discrete event simulation
double impingement feeding system
double-row side nozzles
drainage
dual gas injection
dust ash
dynamic model
EAF
electric arc furnace
Electric Arc Furnace
electrical energy consumption
entrainment
Eulerian multiphase flow
fault detection and identification
flat rolling
flat-rolled wire
flow behavior
flow pattern
fuel injection
funneling flow
gas flow
gated recurrent unit
genetic algorithm
GPR
hearth
hearth drainage
heating time
horizontal single belt casting process (HSBC)
hot rolling
hot rolling planning
Industry 4.0
interfacial phenomena
ion-molecule coexistence theory
iron and slag flow
iron ore sintering process
ironmaking blast furnace
kinetic models
LF refining slags
Lignite
lining wear
liquid iron
machine learning
macroscopic shear bands
main trough
mass transfer coefficient
mathematical model
mathematical modeling
matte-slag chemistry
mechanism
microwave and ultrasound modification
mixed charging
mixing time
molten slag
monomer blended fuel
moving path
multiple linear regression
n/a
natural gas
neural network
nickel-based alloy
nickel-copper smelter
normal pressure
numerical model
numerical simulation
oxygen bottom blown
oxygen consumption
particle flow
pattern
PCA
Peirce-smith converting
pellet pile
physical modeling
porosity distribution
prediction model
process model
processing maps
quasi-particle
quasi-particle fuel
quasi-particle structure
raceway evolution
raceway size
raceway zone
radar data
radiometric sensors
RAFT
refractory
roasting
roll design
scrap melting
secondary refining
segregation models
settling
shape rolling
Shuikoushan process
simulation
SKS
slag entrapment
slag eye
solidification
SPH
spinel
stainless steel slag
statistical modeling
steel refining
steelmaking
strain inhomogeneity
structural characterization
structural simulation
supersonic coherent jet
support vector data description
tapholes
temperature distribution
thermodynamic model
time sequence prediction
TiN inclusion
tire cord steel
titanium distribution ratio
TOU electricity pricing
transient fluid of hot metal and molten slag
trickle flow
validation
wall shear stress
water model
wire rod
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557580503321
Saxen Henrik  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui