Clinical Studies, Big Data, and Artificial Intelligence in Nephrology and Transplantation |
Autore | Cheungpasitporn Wisit |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
Descrizione fisica | 1 electronic resource (374 p.) |
Soggetto topico | Medicine |
Soggetto non controllato |
tacrolimus
C/D ratio tacrolimus metabolism everolimus conversion kidney transplantation gut microbiome renal transplant recipient diarrhea immunosuppressive medication gut microbiota 16S rRNA sequencing butyrate-producing bacteria Proteobacteria torquetenovirus immunosuppression transplantation immunosuppressed host outcome renal transplantation Goodpasture syndrome anti-GBM disease epidemiology hospitalization outcomes acute kidney injury risk prediction artificial intelligence patent ductus arteriosus conservative management blood pressure eradication interferon-free regimen hepatitis C infection kidney transplant allograft steatosis lipopeliosis transplant numbers live donors public awareness Google TrendsTM machine learning big data nephrology chronic kidney disease NLR PLR RPGN predictive value hemodialysis withdrawal cellular crescent global sclerosis procurement kidney biopsy glomerulosclerosis minimally-invasive donor nephrectomy robot-assisted surgery laparoscopic surgery organ donation living kidney donation MeltDose® LCPT renal function liver transplantation metabolism erythropoietin fibroblast growth factor 23 death weekend effect in-hospital mortality comorbidity dialysis elderly klotho α-Klotho FGF-23 kidney donor Nephrology CKD-MBD CKD-Mineral and Bone Disorder deceased donor Eurotransplant Senior Program risk stratification intensive care kidney transplant recipients long-term outcomes graft failure cardiovascular mortality lifestyle inflammation vascular calcification bone mineral density dual-energy X-ray absorptiometry living donation repeated kidney transplantation graft survival prolonged ischaemic time patient survival pre-emptive transplantation metabolomics urine acute rejection allograft cystatin C hyperfiltration kidney injury molecule (KIM)-1 tubular damage genetic polymorphisms (cardiac) surgery inflammatory cytokines clinical studies chronic kidney disease (CKD) no known kidney disease (NKD) ICD-10 billing codes phenotyping electronic health record (EHR) estimated glomerular filtration rate (eGFR) machine learning (ML) generalized linear model network (GLMnet) random forest (RF) artificial neural network (ANN), clinical natural language processing (clinical NLP) discharge summaries laboratory values area under the receiver operating characteristic (AUROC) area under the precision-recall curve (AUCPR) fibrosis extracellular matrix collagen type VI living-donor kidney transplantation ethnic disparity |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557367503321 |
Cheungpasitporn Wisit
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Global Burden and Challenges of Melioidosis |
Autore | Dance David AB |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
Descrizione fisica | 1 electronic resource (272 p.) |
Soggetto non controllato |
South America
Papua New Guinea Cambodia Laos prevention environmental Seychelles Africa India Lao PDR western Indian Ocean animal treatment Hong Kong transmission modes Madagascar Thailand Middle East bacteriology Vietnam public awareness Burkholderia MLST Sri Lanka melioidosis veterinary South Asia mortality Caribbean Australia Central America Myanmar Malaysia awareness Réunion diagnosis Mauritius Melioidosis clinical tropical medicine B. pseudomallei Singapore Oceania epidemiology China genomics Burkholderia pseudomallei surveillance Philippines environment Bangladesh Mexico Indonesia |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910346664003321 |
Dance David AB
![]() |
||
MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Monitoring and Surveillance of Veterinary Antimicrobial Use and Antibiotic Resistance in Animals |
Autore | Firth Clair L |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (292 p.) |
Soggetto topico | Medicine |
Soggetto non controllato |
Escherichia coli
antimicrobial resistance swine weaned piglet antibiotic growth promoters antibiotic antibiotic resistance livestock antibiotic use AMR MDR environment antimicrobial usage bovine India KAP survey veterinarians antimicrobial use antimicrobial resistance (AMR) Timor-Leste antimicrobial veterinary prudent use critically important antimicrobials growth promotion poultry sheep beef cattle normalised resistance interpretation antimicrobial susceptibility testing tetracyclines farms turkeys farm antimicrobial resistance genes biosecurity risk factor metagenomics qPCR isolates neonatal calf diarrhea survey antibiotics HPCIA urinary tract infection Flexicult Vet pathogen identification dogs cats veterinary microbiology bovine respiratory disease multidrug-resistance Pasteurella multocida Mannheimia haemolytica Truperella pyogenes dairy farm E. coli calves enteritis serotypes virulence multidrug-resistant extensively drug-resistant dairy ESBL MRSA dog canine parvovirus Carnivore protoparvovirus 1 multidrug resistance One Health Enterobacteriaceae public awareness farmworkers chicken growth promoters Staphylococcus hyicus PFGE exudative epidermitis pigs monitoring carbapenems CPE meat-producing animal companion animal travelers feed risk assessment introduction risk stochastic risk model coagulase-negative Staphylococcus CoNS quails broilers |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910576886403321 |
Firth Clair L
![]() |
||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|