top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Process Monitoring for Industry 4.0
Advanced Process Monitoring for Industry 4.0
Autore Reis Marco S
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (288 p.)
Soggetto topico Technology: general issues
Soggetto non controllato artificial generation of variability
auto machine learning
classification
combustion
condition monitoring
construction industry
continuous casting
control chart pattern
convolutional neural network
curve resolution
data augmentation
data mining
data reconciliation
decision support systems
digital processing
discriminant analysis
disruption management
disruptions
expert systems
failure mode and effects analysis (FMEA)
failure mode effects analysis
fault detection
fault diagnosis
high-dimensional data
imbalanced data
Industry 4.0
latent variables models
load identification
membrane
monitoring
multi-mode model
multi-phase residual recursive model
multiscale
multivariate data analysis
n/a
neural networks
non-intrusive load monitoring
online
optical sensors
OPTICS
pasting process
PCA
plaster production
PLS
principal component analysis
process control
process image
process monitoring
quality control
quality prediction
real-time
risk priority number
rolling bearing
semiconductor manufacturing
signal detection
Six Sigma
spatial-temporal data
spectroscopy measurements
statistical process control
statistical process monitoring
time series classification
yield improvement
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557491503321
Reis Marco S  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes
Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes
Autore Gao Zhiwei
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (514 p.)
Soggetto topico Technology: general issues
Soggetto non controllato acetonitrile
additive white Gaussian noises (AWGN)
association matrix
behavior transfer
belief statistic
cascading failures
CFSFDP algorithm
close distance coal seams
coarse model
complex network theory
condition monitoring
constitutive model
control chart
control problem
cumulative distribution function
data-driven methods
dead time
deep deterministic policy gradient
deep reinforcement learning
deviation control
distributed generation (DG)
distributed model predictive control
drilling machine
energy conversion systems
event-based
EWT
failure criterion
fast Fourier transform (FFT)
Fast-Newman algorithm
fault classification
fault diagnosis
fault prognosis
flexible flow shop
flexible flow shop scheduling
flotation process
full-heat integration
fuzzy logic
gamma distribution
goaf
gob-side entry retaining by roof cutting
graph theory
hardware experiment
Holmquist-Johnson-Cook constitutive model of briquette
Hopfield neural network
Hybrid Attack Graph
improved compact genetic algorithm
in-situ monitoring
incomplete data
INSGA-II
Level-of-Resilience
limited buffer
link-addition strategy
load identification
local scheduling
loop design
memetic salp swarm algorithm
microalgae
MIMO temperature control in heating process system
multi-input and multi-output system
multi-input multi-output (MIMO) temperature system
multi-linear principal component analysis (MPCA)
multi-objective optimization
multi-queue limited buffers
multiscale fuzzy entropy
n/a
neutrosophic statistic
non-pillar
nonlinear adaptive backstepping controller disturbance observer
numerical simulation
oil and gas
optimal nonlinear adaptive control
parameter acquisition
parameter uncertainties
perturbation observer
PID
PNN
pole-zero cancelation
potential crowding distance
power systems
pressure swing distillation
probability density function of the Gaussian distribution
process control
public buffer
raceway
reactive power optimization
reagent dosage
refrigeration
reinforcement learning
resilient control
roadway supporting
self-learning
semiconductor bonding equipment-grouping method
separation
simulated annealing algorithm
slow-mode-based control
split Hopkinson pressure bar experiment
stability
state-action chains
static and dynamic planning
steam power plant
steam/water loop
stress distribution
temperature difference
temperature differences
time series froth image
topology
transfer bees optimizer
transient response
tunnel boring machine
uncorrelated multi-linear principal component analysis (UMPCA)
variable geometry turbocharger
voltage source converter
water
wind turbine
wind turbine systems
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557338303321
Gao Zhiwei  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Commemorative Issue to Celebrate the Life and Work of Prof. Roger W.H. Sargent
Commemorative Issue to Celebrate the Life and Work of Prof. Roger W.H. Sargent
Autore Gani Rafiqul
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (254 p.)
Soggetto topico Technology: general issues
Soggetto non controllato autoassociative neural network
big data
bio-jet diesel
co-hydrotreating
coproduction
cryogenic separation
curricula
design
distribution
energy systems engineering
fuzzy optimization
generalized disjunctive programming
higher education
hydrodeoxigenation
hydrodesulphurisation
input-output model
integration
LNG
Lurgi syngas
mathematical programming
methanol synthesis
MINLP
mixed-integer programming
n/a
nonlinear principal component analysis
nonlinear programming
oil supply chain
optimization
parallel neural networks
planning
preliminary stage design
process control
process design
process modeling
process monitoring
process scheduling
process synthesis
process system engineering
process systems engineering
quadratic optimization
quadratically-constrained quadratic optimization
reactive distillation
robust optimization
scheduling
symmetry
uncertainty
visualization
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557292803321
Gani Rafiqul  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematics and Engineering
Mathematics and Engineering
Autore Li Mingheng
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (306 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato agricultural division of labor
agro-hydrological systems
amplitudes change
anonymous signature
artificial intelligence
autonomous vehicle
block methods
cement
chemical processes
chemical reactor control
comparative advantage
control engineering
control systems
controller verification
convergence analysis
cyber-attacks
digital computation
direction cosines
distillation column control
economic model predictive control
energy
energy-based control
ensemble kalman filter
Euler angles
extended kalman filter
fusion
Green's symmetry problem
group signature
homotopy analysis method
industrial cyber-physical systems
infra-marginal model
interpretability
kinematics
kinetics
larger Lipschitz constants
linear matrix inequalities
linear response eigenvalue problem
mathematical model
MATLAB simulation
mechanics
Micro Grid
mining vibrating screen
model predictive control
moving horizon estimation
multi-sensors
nanofluids
network classification
network evolution
network internal dynamics
network invariants
network symmetries
neural network
nonlinear chemical processes
nonlinear processes
opening capability
optimization
optimization theory
parameter estimation
payload swing attenuation
Phoronomics
power-law fluids
process control
propensities
quadrotor
real-time optimization
responsive control
richards equation
seashore soft soil
security
smart grid
space dynamics
specialized production
spring failures diagnosis
state estimation
stress-strain behavior
sulfuric acid erosion
symmetry ensembles
target detection
temperature-jump
theoretical rigid body model
thick restart
transaction cost
velocity-slip
weighted Golub-Kahan-Lanczos algorithm
YOLO
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557474903321
Li Mingheng  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling and Simulation of Energy Systems / Thomas A. Adams
Modeling and Simulation of Energy Systems / Thomas A. Adams
Autore Adams Thomas A
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (496 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato FCMP
modeling and simulation
multiphase equilibrium
modeling
polymer electrolyte membrane fuel cell (PEMFC)
dynamic simulation
simulation
multi-scale systems engineering
process simulation
cycling
time-delay
exergy loss
gas path analysis
oil and gas
solar PV
optimization
second law efficiency
auto thermal reformer
friction factor
optimal battery operation
biodiesel
energy
time-varying operation
efficiency
process synthesis and design
nonsmooth modeling
mixture ratio
supercritical CO2
dynamic optimization
technoeconomic analysis
work and heat integration
compressibility factor
multi-objective optimisation
circulating fluidized bed boiler
wind power
naphtha recovery unit
cost optimization
recompression cycle
hybrid Life Cycle Assessment
post-combustion CO2 capture
piecewise-linear function generation
solar energy
industrial process heat
kriging
statistical model
supercritical pulverized coal (SCPC)
parabolic trough
combined cycle
H2O-LiBr working pair
linearization
process integration
smith predictor
process design
analysis by synthesis
MINLP
methyl-oleate
diagnostics
offshore wind
double-effect system
shale gas condensate
geothermal energy
multi-loop control
R123
waste to energy
hybrid system
cogeneration
energy storage
energy efficiency
nonlinear mathematical programming
superstructure
concentrating solar thermal
desalination
modelling
binary cycle
organic Rankine cycle
refuse derived fuel
power plants
WHENS
process control
compressor modeling
energy systems
PTC
life cycle analysis
natural gas transportation
isentropic exponent
top-down models
thermal storage
supercritical carbon dioxide
operations
sustainable process design
hybrid solar
energy management
R245fa
building blocks
energy economics
micro gas turbine
CSP
fuel cost minimization problem
CST
palladium membrane hydrogen separation
battery degradation
optimal control
RK-ASPEN
process systems engineering
supervisory control
absorption refrigeration
concentrating solar power
shale gas condensate-to-heavier liquids
Dieng
DMR liquefaction processes
dynamic modeling
Organic Rankine Cycle (ORC)
load-following
demand response
Indonesia
ISBN 9783039215195
3039215191
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367747603321
Adams Thomas A  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Product/Process Fingerprint in Micro Manufacturing / Guido Tosello
Product/Process Fingerprint in Micro Manufacturing / Guido Tosello
Autore Tosello Guido
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (274 p.)
Soggetto topico Technology: general issues
Soggetto non controllato Fresnel lenses
Electro sinter forging
micro-injection moulding
surface roughness
charge relaxation time
optimization
gratings
plasma-electrolytic polishing
micro structures replication
micro-grinding
electrical discharge machining
injection molding
quality control
commercial control hardware
electrical current
damping
process monitoring
fingerprints
impact analysis
current monitoring
process control
quality assurance
surface integrity
microfabrication
microinjection moulding
electro chemical machining
superhydrophobic surface
surface modification
haptic actuator
electrical discharge machining (EDM)
surface morphology
inline metrology
optical quality control
finishing
flow length
precision injection molding
laser ablation
micro metrology
Halbach linear motor
2-step analysis
computer holography
PeP
satellite drop
process fingerprint
materials characterisation
current density
micro drilling
multi-spectral imaging
lithography
manufacturing signature
artificial compound eye
electrohydrodynamic jet printing
ECM
positioning platform
diffractive optics
bioceramics
resistance sintering
uncertainty budget
product fingerprint
confocal microscopy
spectral splitting
dental implant
desirability function
injection compression molding
electrochemical machining (ECM)
high strain rate effect
process fingerprints
ISBN 9783039210350
3039210351
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346841703321
Tosello Guido  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent Advances in Water and Wastewater Treatment with Emphasis in Membrane Treatment Operations
Recent Advances in Water and Wastewater Treatment with Emphasis in Membrane Treatment Operations
Autore Zouboulis Anastasios
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (230 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato adsorption
adsorption kinetics
antimony
antimony treatment
arsenic
arsenic adsorption
backwash duration
bioethanol recovery
biofilm membrane bioreactor
cake resistance
ceramic membranes
chromate
co-treatment
coagulation
crossflow membrane filtration
desalination
dewatering
drinking water
Fe-based coagulants
fouling
granular ferric hydroxide
HA-BSA mixtures
hexavalent chromium
hollow fiber membranes
hollow fibre
interaction energy
mass transfer
Membrane Bioreactor
membrane filtration
membrane fouling
membrane resistance
membranes
microfiltration
modeling
multiphase
multivariate statistics
municipal wastewater sludge
natural organic matter
natural organic matter (NOM)
operation
optical sensors
ozonation
particle size distribution
peroxone
polluted waters
polydimethylsiloxane
process control
produced water treatment
Sb(III)
Sb(V)
second cheese whey
separation
small sized powdered ferric hydroxide
sodium alginate
solution conditions
temperature
TMP
trickling biofilter
ultrafiltration
vacuum membrane distillation
wastewater treatment
water crisis
water matrix
water treatment
winery effluents
xDLVO theory
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910669804603321
Zouboulis Anastasios  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermochemical Conversion Processes for Solid Fuels and Renewable Energies
Thermochemical Conversion Processes for Solid Fuels and Renewable Energies
Autore Alobaid Falah
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (222 p.)
Soggetto topico Research & information: general
Technology: general issues
Soggetto non controllato absorption chiller
biogas upgrading
biomass
biomass gasification
carbon capture and storage/utilization
CFB combustion
chemical looping
CO2 absorption
CO2 capture
combustion
conversion model
CSP
dual fluidized bed
dynamic process simulation
energy analysis
energy and exergy analyses
exergy analysis
experimental study
fluctuating electricity generation
fluidized-bed gasifier
fuel feeding rate
gasification
hydrochar
hydrodynamics
hydrothermal carbonization
integrated solar combined cycle
ISCC
kinetic model
kinetics
lignite
lignite gasification
load transients
low-rank coal
olivine
one-dimensional SEG model
operational flexibility
performance and analysis
power plant
pressure swing adsorption
process control
process simulation
PTC
reaction model
renewables
sensitivity analyses
solar cooling
solar cooling system
solar energy
solar-driven air-conditioning
sorbent deactivation
tar absorption
thermochemical conversion technologies
thermodynamic modeling
TRNSYS
validation study
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557418803321
Alobaid Falah  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Tuning and control loop performance / / Gregory K. McMillan
Tuning and control loop performance / / Gregory K. McMillan
Autore McMillan Gregory K. <1946-, >
Edizione [Fourth edition.]
Pubbl/distr/stampa New York, [New York] (222 East 46th Street, New York, NY 10017) : , : Momentum Press, , 2015
Descrizione fisica 1 online resource (584 pages)
Disciplina 629.83
Collana Manufacturing and engineering collection
Soggetto topico Process control
Feedback control systems
Soggetto genere / forma Electronic books.
Soggetto non controllato adaptive control
advanced regulatory control
analyzer response
auto tuner
automation system
batch optimization
bioreactor control
cascade control
compressor control
control loop performance
control valve response
external reset feedback
feedforward control
inverse response
lambda tuning
level control
measurement response
pH control
PID control
PID execution rate
PID filter
PID form
PID structure
PID tuning
pressure control
process control
process disturbances
process dynamics
process interaction
process metrics
process nonlinearity
process performance
process response
proportional-integral-derivative controller
reactor control
runaway reaction
temperature control
valve deadband
valve position control
valve resolution
variable frequency drive response
wireless control
wireless response
ISBN 1-60650-171-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Fundamentals -- 1.1 Introduction -- 1.1.1 Perspective -- 1.1.2 Overview -- 1.1.3 Recommendations -- 1.2 PID controller -- 1.2.1 Proportional mode -- 1.2.2 Integral mode -- 1.2.3 Derivative mode -- 1.2.4 ARW and output limits -- 1.2.5 Control action and valve action -- 1.2.6 Operating modes -- 1.3 Loop dynamics -- 1.3.1 Types of process responses -- 1.3.2 Dead times and time constants -- 1.3.3 Open loop self-regulating and integrating process gains -- 1.3.4 Deadband, resolution, and threshold sensitivity -- 1.4 Typical mode settings -- 1.5 Typical tuning methods -- 1.5.1 Lambda tuning for self-regulating processes -- 1.5.2 Lambda tuning for integrating processes -- 1.5.3 IMC tuning for self-regulating processes -- 1.5.4 IMC tuning for integrating processes -- 1.5.5 Skogestad internal model control tuning for self-regulating processes -- 1.5.6 SIMC tuning for integrating processes -- 1.5.7 Traditional open loop tuning -- 1.5.8 Modified Ziegler-Nichols reaction curve tuning -- 1.5.9 Modified Ziegler-Nichols ultimate oscillation tuning -- 1.5.10 Quarter amplitude oscillation tuning -- 1.5.11 SCM tuning for self-regulating processes -- 1.5.12 SCM tuning for integrating processes -- 1.5.13 SCM tuning for runaway processes -- 1.5.14 Maximizing absorption of variability tuning for surge tank level -- 1.6 Test results -- 1.6.1 Performance of tuning settings on dead time dominant processes -- 1.6.2 Performance of tuning settings on near-integrating processes -- 1.6.3 Performance of tuning settings on true integrating processes -- 1.6.4 Performance of tuning settings on runaway processes -- 1.6.5 Slow oscillations from low PID gain in integrating and runaway processes -- 1.6.6 Performance of tuning methods on various processes -- Key points --
2. Unified methodology -- 2.1 Introduction -- 2.1.1 Perspective -- 2.1.2 Overview -- 2.1.3 Recommendations -- 2.2 PID features -- 2.2.1 PID form -- 2.2.2 External reset feedback -- 2.2.3 PID structure -- 2.2.4 Split range -- 2.2.5 Signal characterization -- 2.2.6 Feedforward -- 2.2.7 Decoupling -- 2.2.8 Output tracking and remote output -- 2.2.9 Setpoint filter, lead-lag, and rate limits -- 2.2.10 Enhanced PID for wireless and analyzers -- 2.3 Automation system difficulties -- 2.3.1 Open loop gain problems -- 2.3.2 Time constant problems -- 2.3.3 Dead time problems -- 2.3.4 Limit cycle problems -- 2.3.5 Noise problems -- 2.3.6 Accuracy and precision problems -- 2.4 Process objectives -- 2.4.1 Maximize turndown -- 2.4.2 Maximize safety and environmental protection -- 2.4.3 Minimize product variability -- 2.4.4 Maximize process efficiency and capacity -- 2.5 Step-by-step solutions -- 2.6 Test results -- Key points --
3. Performance criteria -- 3.1 Introduction -- 3.1.1 Perspective -- 3.1.2 Overview -- 3.1.3 Recommendations -- 3.2 Disturbance response metrics -- 3.2.1 Accumulated error -- 3.2.2 Peak error -- 3.2.3 Disturbance lag -- 3.3 Setpoint response metrics -- 3.3.1 Rise time -- 3.3.2 Overshoot and undershoot -- Key points --
4. Effect of process dynamics -- 4.1 Introduction -- 4.1.1 Perspective -- 4.1.2 Overview -- 4.1.3 Recommendations -- 4.2 Effect of mechanical design -- 4.2.1 Equipment and piping dynamics -- 4.2.2 Common equipment and piping design mistakes -- 4.3 Estimation of total dead time -- 4.4 Estimation of open loop gain -- 4.5 Major types of process responses -- 4.5.1 Self-regulating processes -- 4.5.2 Integrating processes -- 4.5.3 Runaway processes -- 4.6 Examples -- 4.6.1 Waste treatment pH loops (self-regulating process) -- 4.6.2 Boiler feedwater flow loop (self-regulating process) -- 4.6.3 Boiler drum level loop (integrating process) -- 4.6.4 Furnace pressure loop (near-integrating process) -- 4.6.5 Exothermic reactor cascade temperature loop (runaway process) -- 4.6.6 Biological reactor biomass concentration loop (runaway process) -- Key points --
5. Effect of controller dynamics -- 5.1 Introduction -- 5.1.1 Perspective -- 5.1.2 Overview -- 5.1.3 Recommendations -- 5.2 Execution rate and filter time -- 5.2.1 First effect via equation for integrated error -- 5.2.2 Second effect via equations for implied dead time -- 5.3 Smart reset action -- 5.4 Diagnosis of tuning problems -- 5.5 Furnace pressure loop example (near-integrating) -- 5.6 Test results -- Key points --
6. Effect of measurement dynamics -- 6.1 Introduction -- 6.1.1 Perspective -- 6.1.2 Overview -- 6.1.3 Recommendations -- 6.2 Wireless update rate and transmitter damping -- 6.2.1 First effect via equation for integrated error -- 6.2.2 Second effect via equations for implied dead time -- 6.3 Analyzers -- 6.4 Sensor lags and delays -- 6.5 Noise and repeatability -- 6.6 Threshold sensitivity and resolution limits -- 6.7 Rangeability (turndown) -- 6.8 Runaway processes -- 6.9 Accuracy, precision, and drift -- 6.10 Attenuation and deception -- 6.11 Examples -- 6.11.1 Waste treatment pH loop (self-regulating process) -- 6.11.2 Boiler feedwater flow loop (self-regulating process) -- 6.11.3 Boiler drum level loop (integrating process) -- 6.11.4 Furnace pressure loop (near-integrating process) -- 6.11.5 Exothermic reactor cascade temperature loop (runaway process) -- 6.11.6 Biological reactor biomass concentration loop (runaway process) -- 6.12 Test results -- Key points --
7. Effect of valve and variable frequency drive dynamics -- 7.1 Introduction -- 7.1.1 Perspective -- 7.1.2 Overview -- 7.1.3 Recommendations -- 7.2 Valve positioners and accessories -- 7.2.1 Pneumatic positioners -- 7.2.2 Digital positioners -- 7.2.3 Current to pneumatic (I/P) transducers -- 7.2.4 Solenoid valves -- 7.2.5 Volume boosters -- 7.3 Actuators, shafts, and stems -- 7.3.1 Diaphragm actuators -- 7.3.2 Piston actuators -- 7.3.3 Linkages and connections -- 7.4 VFD system design -- 7.4.1 Pulse width modulation -- 7.4.2 Cable problems -- 7.4.3 Bearing problems -- 7.4.4 Speed slip -- 7.4.5 Motor requirements -- 7.4.6 Drive controls -- 7.5 Dynamic response -- 7.5.1 Control valve response -- 7.5.2 VFD response -- 7.5.3 Dead time approximation -- 7.5.4 Deadband and resolution -- 7.5.5 When is a valve or VFD too slow? -- 7.5.6 Limit cycles -- 7.6 Installed flow characteristics and rangeability -- 7.6.1 Valve flow characteristics -- 7.6.2 Valve rangeability -- 7.6.3 VFD flow characteristics -- 7.6.4 VFD rangeability -- 7.7 Best practices -- 7.7.1 Control valve design specifications -- 7.7.2 VFD design specifications -- 7.8 Test results -- Key points --
8. Effect of disturbances -- 8.1 Introduction -- 8.1.1 Perspective -- 8.1.2 Overview -- 8.1.3 Recommendations -- 8.2 Disturbance dynamics -- 8.2.1 Load time constants -- 8.2.2 Load rate limit -- 8.2.3 Disturbance dead time -- 8.2.4 Disturbance oscillations -- 8.3 Disturbance location -- 8.4 Disturbance troubleshooting -- 8.4.1 Sources of fast oscillations -- 8.4.2 Sources of slow oscillations -- 8.5 Disturbance mitigation -- 8.6 Test results -- Key points --
9. Effect of nonlinearities -- 9.1 Introduction -- 9.1.1 Perspective -- 9.1.2 Overview -- 9.1.3 Recommendations -- 9.2 Variable gain -- 9.2.1 Cascade control -- 9.2.2 Reversals of process sign -- 9.2.3 Signal characterization -- 9.2.4 Gain scheduling -- 9.2.5 Adaptive control -- 9.2.6 Gain margin -- 9.3 Variable dead time -- 9.4 Variable time constant -- 9.5 Inverse response -- 9.6 Test results -- Key points --
10. Effect of interactions -- 10.1 Introduction -- 10.1.1 Perspective -- 10.1.2 Overview -- 10.1.3 Recommendations -- 10.2 Pairing -- 10.2.1 Relative gain array -- 10.2.2 Distillation column example -- 10.2.3 Static mixer example -- 10.2.4 Hidden control loops -- 10.2.5 Relative gains less than zero -- 10.2.6 Relative gains from zero to one -- 10.2.7 Relative gains greater than one -- 10.2.8 Model predictive control -- 10.3 Decoupling -- 10.4 Directional move suppression -- 10.5 Tuning -- 10.6 Test results -- Key points --
11. Cascade control -- 11.1 Introduction -- 11.1.1 Perspective -- 11.1.2 Overview -- 11.1.3 Recommendations -- 11.2 Configuration and tuning -- 11.3 Process control benefits -- 11.4 Process knowledge benefits -- 11.5 Watch-outs -- 11.6 Test results -- Key points --
12. Advanced regulatory control -- 12.1 Introduction -- 12.1.1 Perspective -- 12.1.2 Overview -- 12.1.3 Recommendations -- 12.2 Feedforward control -- 12.2.1 Opportunities -- 12.2.2 Watch-outs -- 12.3 Intelligent output action -- 12.3.1 Opportunities -- 12.3.2 Watch-outs -- 12.4 Intelligent integral action -- 12.4.1 Opportunities -- 12.4.2 Watch-outs -- 12.5 Dead time compensation -- 12.5.1 Opportunities -- 12.5.2 Watch-outs -- 12.6 Valve position control -- 12.6.1 Opportunities -- 12.6.2 Watch-outs -- 12.7 Override control -- 12.7.1 Opportunities -- 12.7.2 Watch-outs -- 12.8 Test results -- Key points --
13. Process control improvement -- 13.1 Introduction -- 13.1.1 Perspective -- 13.1.2 Overview -- 13.1.3 Recommendations -- 13.2 Unit operation metrics -- 13.3 Opportunities -- 13.3.1 Variability -- 13.3.2 Increasing capacity and efficiency -- 13.3.3 Effective use of models -- 13.3.4 Sizing and assessment -- 13.4 Key questions -- Key points --
14. Auto tuners and adaptive control -- 14.1 Introduction -- 14.1.1 Perspective -- 14.1.2 Overview -- 14.1.3 Recommendations -- 14.2 Methodology -- Key points --
15. Batch optimization -- 15.1 Introduction -- 15.1.1 Perspective -- 15.1.2 Overview -- 15.1.3 Recommendations -- 15.2 Cycle time -- 15.3 Profile -- 15.4 End point -- Key points --
Appendix A. Automation system performance top 10 concepts -- Appendix B. Basics of PID controllers -- Appendix C. Controller performance -- Appendix D. Discussion -- Appendix E. Enhanced PID for wireless and analyzer applications -- Appendix F. First principle process relationships -- Appendix G. Gas pressure dynamics -- Appendix H. Convective heat transfer coefficients -- Appendix I. Interactive to noninteractive time constant conversion -- Appendix. Jacket and coil temperature control -- Appendix K. PID forms and conversion of tuning settings -- Appendix L. Liquid mixing dynamics -- Appendix M. Measurement speed requirements for SIS -- References -- Bibliography -- About the author -- Index.
Record Nr. UNINA-9910459794203321
McMillan Gregory K. <1946-, >  
New York, [New York] (222 East 46th Street, New York, NY 10017) : , : Momentum Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Tuning and control loop performance / / Gregory K. McMillan
Tuning and control loop performance / / Gregory K. McMillan
Autore McMillan Gregory K. <1946-, >
Edizione [Fourth edition.]
Pubbl/distr/stampa New York, [New York] (222 East 46th Street, New York, NY 10017) : , : Momentum Press, , 2015
Descrizione fisica 1 online resource (584 pages)
Disciplina 629.83
Collana Manufacturing and engineering collection
Soggetto topico Process control
Feedback control systems
Soggetto non controllato adaptive control
advanced regulatory control
analyzer response
auto tuner
automation system
batch optimization
bioreactor control
cascade control
compressor control
control loop performance
control valve response
external reset feedback
feedforward control
inverse response
lambda tuning
level control
measurement response
pH control
PID control
PID execution rate
PID filter
PID form
PID structure
PID tuning
pressure control
process control
process disturbances
process dynamics
process interaction
process metrics
process nonlinearity
process performance
process response
proportional-integral-derivative controller
reactor control
runaway reaction
temperature control
valve deadband
valve position control
valve resolution
variable frequency drive response
wireless control
wireless response
ISBN 1-60650-171-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Fundamentals -- 1.1 Introduction -- 1.1.1 Perspective -- 1.1.2 Overview -- 1.1.3 Recommendations -- 1.2 PID controller -- 1.2.1 Proportional mode -- 1.2.2 Integral mode -- 1.2.3 Derivative mode -- 1.2.4 ARW and output limits -- 1.2.5 Control action and valve action -- 1.2.6 Operating modes -- 1.3 Loop dynamics -- 1.3.1 Types of process responses -- 1.3.2 Dead times and time constants -- 1.3.3 Open loop self-regulating and integrating process gains -- 1.3.4 Deadband, resolution, and threshold sensitivity -- 1.4 Typical mode settings -- 1.5 Typical tuning methods -- 1.5.1 Lambda tuning for self-regulating processes -- 1.5.2 Lambda tuning for integrating processes -- 1.5.3 IMC tuning for self-regulating processes -- 1.5.4 IMC tuning for integrating processes -- 1.5.5 Skogestad internal model control tuning for self-regulating processes -- 1.5.6 SIMC tuning for integrating processes -- 1.5.7 Traditional open loop tuning -- 1.5.8 Modified Ziegler-Nichols reaction curve tuning -- 1.5.9 Modified Ziegler-Nichols ultimate oscillation tuning -- 1.5.10 Quarter amplitude oscillation tuning -- 1.5.11 SCM tuning for self-regulating processes -- 1.5.12 SCM tuning for integrating processes -- 1.5.13 SCM tuning for runaway processes -- 1.5.14 Maximizing absorption of variability tuning for surge tank level -- 1.6 Test results -- 1.6.1 Performance of tuning settings on dead time dominant processes -- 1.6.2 Performance of tuning settings on near-integrating processes -- 1.6.3 Performance of tuning settings on true integrating processes -- 1.6.4 Performance of tuning settings on runaway processes -- 1.6.5 Slow oscillations from low PID gain in integrating and runaway processes -- 1.6.6 Performance of tuning methods on various processes -- Key points --
2. Unified methodology -- 2.1 Introduction -- 2.1.1 Perspective -- 2.1.2 Overview -- 2.1.3 Recommendations -- 2.2 PID features -- 2.2.1 PID form -- 2.2.2 External reset feedback -- 2.2.3 PID structure -- 2.2.4 Split range -- 2.2.5 Signal characterization -- 2.2.6 Feedforward -- 2.2.7 Decoupling -- 2.2.8 Output tracking and remote output -- 2.2.9 Setpoint filter, lead-lag, and rate limits -- 2.2.10 Enhanced PID for wireless and analyzers -- 2.3 Automation system difficulties -- 2.3.1 Open loop gain problems -- 2.3.2 Time constant problems -- 2.3.3 Dead time problems -- 2.3.4 Limit cycle problems -- 2.3.5 Noise problems -- 2.3.6 Accuracy and precision problems -- 2.4 Process objectives -- 2.4.1 Maximize turndown -- 2.4.2 Maximize safety and environmental protection -- 2.4.3 Minimize product variability -- 2.4.4 Maximize process efficiency and capacity -- 2.5 Step-by-step solutions -- 2.6 Test results -- Key points --
3. Performance criteria -- 3.1 Introduction -- 3.1.1 Perspective -- 3.1.2 Overview -- 3.1.3 Recommendations -- 3.2 Disturbance response metrics -- 3.2.1 Accumulated error -- 3.2.2 Peak error -- 3.2.3 Disturbance lag -- 3.3 Setpoint response metrics -- 3.3.1 Rise time -- 3.3.2 Overshoot and undershoot -- Key points --
4. Effect of process dynamics -- 4.1 Introduction -- 4.1.1 Perspective -- 4.1.2 Overview -- 4.1.3 Recommendations -- 4.2 Effect of mechanical design -- 4.2.1 Equipment and piping dynamics -- 4.2.2 Common equipment and piping design mistakes -- 4.3 Estimation of total dead time -- 4.4 Estimation of open loop gain -- 4.5 Major types of process responses -- 4.5.1 Self-regulating processes -- 4.5.2 Integrating processes -- 4.5.3 Runaway processes -- 4.6 Examples -- 4.6.1 Waste treatment pH loops (self-regulating process) -- 4.6.2 Boiler feedwater flow loop (self-regulating process) -- 4.6.3 Boiler drum level loop (integrating process) -- 4.6.4 Furnace pressure loop (near-integrating process) -- 4.6.5 Exothermic reactor cascade temperature loop (runaway process) -- 4.6.6 Biological reactor biomass concentration loop (runaway process) -- Key points --
5. Effect of controller dynamics -- 5.1 Introduction -- 5.1.1 Perspective -- 5.1.2 Overview -- 5.1.3 Recommendations -- 5.2 Execution rate and filter time -- 5.2.1 First effect via equation for integrated error -- 5.2.2 Second effect via equations for implied dead time -- 5.3 Smart reset action -- 5.4 Diagnosis of tuning problems -- 5.5 Furnace pressure loop example (near-integrating) -- 5.6 Test results -- Key points --
6. Effect of measurement dynamics -- 6.1 Introduction -- 6.1.1 Perspective -- 6.1.2 Overview -- 6.1.3 Recommendations -- 6.2 Wireless update rate and transmitter damping -- 6.2.1 First effect via equation for integrated error -- 6.2.2 Second effect via equations for implied dead time -- 6.3 Analyzers -- 6.4 Sensor lags and delays -- 6.5 Noise and repeatability -- 6.6 Threshold sensitivity and resolution limits -- 6.7 Rangeability (turndown) -- 6.8 Runaway processes -- 6.9 Accuracy, precision, and drift -- 6.10 Attenuation and deception -- 6.11 Examples -- 6.11.1 Waste treatment pH loop (self-regulating process) -- 6.11.2 Boiler feedwater flow loop (self-regulating process) -- 6.11.3 Boiler drum level loop (integrating process) -- 6.11.4 Furnace pressure loop (near-integrating process) -- 6.11.5 Exothermic reactor cascade temperature loop (runaway process) -- 6.11.6 Biological reactor biomass concentration loop (runaway process) -- 6.12 Test results -- Key points --
7. Effect of valve and variable frequency drive dynamics -- 7.1 Introduction -- 7.1.1 Perspective -- 7.1.2 Overview -- 7.1.3 Recommendations -- 7.2 Valve positioners and accessories -- 7.2.1 Pneumatic positioners -- 7.2.2 Digital positioners -- 7.2.3 Current to pneumatic (I/P) transducers -- 7.2.4 Solenoid valves -- 7.2.5 Volume boosters -- 7.3 Actuators, shafts, and stems -- 7.3.1 Diaphragm actuators -- 7.3.2 Piston actuators -- 7.3.3 Linkages and connections -- 7.4 VFD system design -- 7.4.1 Pulse width modulation -- 7.4.2 Cable problems -- 7.4.3 Bearing problems -- 7.4.4 Speed slip -- 7.4.5 Motor requirements -- 7.4.6 Drive controls -- 7.5 Dynamic response -- 7.5.1 Control valve response -- 7.5.2 VFD response -- 7.5.3 Dead time approximation -- 7.5.4 Deadband and resolution -- 7.5.5 When is a valve or VFD too slow? -- 7.5.6 Limit cycles -- 7.6 Installed flow characteristics and rangeability -- 7.6.1 Valve flow characteristics -- 7.6.2 Valve rangeability -- 7.6.3 VFD flow characteristics -- 7.6.4 VFD rangeability -- 7.7 Best practices -- 7.7.1 Control valve design specifications -- 7.7.2 VFD design specifications -- 7.8 Test results -- Key points --
8. Effect of disturbances -- 8.1 Introduction -- 8.1.1 Perspective -- 8.1.2 Overview -- 8.1.3 Recommendations -- 8.2 Disturbance dynamics -- 8.2.1 Load time constants -- 8.2.2 Load rate limit -- 8.2.3 Disturbance dead time -- 8.2.4 Disturbance oscillations -- 8.3 Disturbance location -- 8.4 Disturbance troubleshooting -- 8.4.1 Sources of fast oscillations -- 8.4.2 Sources of slow oscillations -- 8.5 Disturbance mitigation -- 8.6 Test results -- Key points --
9. Effect of nonlinearities -- 9.1 Introduction -- 9.1.1 Perspective -- 9.1.2 Overview -- 9.1.3 Recommendations -- 9.2 Variable gain -- 9.2.1 Cascade control -- 9.2.2 Reversals of process sign -- 9.2.3 Signal characterization -- 9.2.4 Gain scheduling -- 9.2.5 Adaptive control -- 9.2.6 Gain margin -- 9.3 Variable dead time -- 9.4 Variable time constant -- 9.5 Inverse response -- 9.6 Test results -- Key points --
10. Effect of interactions -- 10.1 Introduction -- 10.1.1 Perspective -- 10.1.2 Overview -- 10.1.3 Recommendations -- 10.2 Pairing -- 10.2.1 Relative gain array -- 10.2.2 Distillation column example -- 10.2.3 Static mixer example -- 10.2.4 Hidden control loops -- 10.2.5 Relative gains less than zero -- 10.2.6 Relative gains from zero to one -- 10.2.7 Relative gains greater than one -- 10.2.8 Model predictive control -- 10.3 Decoupling -- 10.4 Directional move suppression -- 10.5 Tuning -- 10.6 Test results -- Key points --
11. Cascade control -- 11.1 Introduction -- 11.1.1 Perspective -- 11.1.2 Overview -- 11.1.3 Recommendations -- 11.2 Configuration and tuning -- 11.3 Process control benefits -- 11.4 Process knowledge benefits -- 11.5 Watch-outs -- 11.6 Test results -- Key points --
12. Advanced regulatory control -- 12.1 Introduction -- 12.1.1 Perspective -- 12.1.2 Overview -- 12.1.3 Recommendations -- 12.2 Feedforward control -- 12.2.1 Opportunities -- 12.2.2 Watch-outs -- 12.3 Intelligent output action -- 12.3.1 Opportunities -- 12.3.2 Watch-outs -- 12.4 Intelligent integral action -- 12.4.1 Opportunities -- 12.4.2 Watch-outs -- 12.5 Dead time compensation -- 12.5.1 Opportunities -- 12.5.2 Watch-outs -- 12.6 Valve position control -- 12.6.1 Opportunities -- 12.6.2 Watch-outs -- 12.7 Override control -- 12.7.1 Opportunities -- 12.7.2 Watch-outs -- 12.8 Test results -- Key points --
13. Process control improvement -- 13.1 Introduction -- 13.1.1 Perspective -- 13.1.2 Overview -- 13.1.3 Recommendations -- 13.2 Unit operation metrics -- 13.3 Opportunities -- 13.3.1 Variability -- 13.3.2 Increasing capacity and efficiency -- 13.3.3 Effective use of models -- 13.3.4 Sizing and assessment -- 13.4 Key questions -- Key points --
14. Auto tuners and adaptive control -- 14.1 Introduction -- 14.1.1 Perspective -- 14.1.2 Overview -- 14.1.3 Recommendations -- 14.2 Methodology -- Key points --
15. Batch optimization -- 15.1 Introduction -- 15.1.1 Perspective -- 15.1.2 Overview -- 15.1.3 Recommendations -- 15.2 Cycle time -- 15.3 Profile -- 15.4 End point -- Key points --
Appendix A. Automation system performance top 10 concepts -- Appendix B. Basics of PID controllers -- Appendix C. Controller performance -- Appendix D. Discussion -- Appendix E. Enhanced PID for wireless and analyzer applications -- Appendix F. First principle process relationships -- Appendix G. Gas pressure dynamics -- Appendix H. Convective heat transfer coefficients -- Appendix I. Interactive to noninteractive time constant conversion -- Appendix. Jacket and coil temperature control -- Appendix K. PID forms and conversion of tuning settings -- Appendix L. Liquid mixing dynamics -- Appendix M. Measurement speed requirements for SIS -- References -- Bibliography -- About the author -- Index.
Record Nr. UNINA-9910787493803321
McMillan Gregory K. <1946-, >  
New York, [New York] (222 East 46th Street, New York, NY 10017) : , : Momentum Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui