top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Process Monitoring for Industry 4.0
Advanced Process Monitoring for Industry 4.0
Autore Reis Marco S
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (288 p.)
Soggetto topico Technology: general issues
Soggetto non controllato spatial-temporal data
pasting process
process image
convolutional neural network
Industry 4.0
auto machine learning
failure mode effects analysis
risk priority number
rolling bearing
condition monitoring
classification
OPTICS
statistical process control
control chart pattern
disruptions
disruption management
fault diagnosis
construction industry
plaster production
neural networks
decision support systems
expert systems
failure mode and effects analysis (FMEA)
discriminant analysis
non-intrusive load monitoring
load identification
membrane
data reconciliation
real-time
online
monitoring
Six Sigma
multivariate data analysis
latent variables models
PCA
PLS
high-dimensional data
statistical process monitoring
artificial generation of variability
data augmentation
quality prediction
continuous casting
multiscale
time series classification
imbalanced data
combustion
optical sensors
spectroscopy measurements
signal detection
digital processing
principal component analysis
curve resolution
data mining
semiconductor manufacturing
quality control
yield improvement
fault detection
process control
multi-phase residual recursive model
multi-mode model
process monitoring
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557491503321
Reis Marco S  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes
Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes
Autore Gao Zhiwei
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (514 p.)
Soggetto topico Technology: general issues
Soggetto non controllato process control
separation
oil and gas
control chart
fuzzy logic
neutrosophic statistic
incomplete data
belief statistic
gamma distribution
microalgae
raceway
control problem
PID
event-based
flexible flow shop scheduling
multi-queue limited buffers
improved compact genetic algorithm
probability density function of the Gaussian distribution
transfer bees optimizer
reinforcement learning
behavior transfer
state-action chains
reactive power optimization
Holmquist-Johnson-Cook constitutive model of briquette
parameter acquisition
split Hopkinson pressure bar experiment
numerical simulation
pressure swing distillation
full-heat integration
acetonitrile
water
distributed model predictive control
steam power plant
steam/water loop
multi-input and multi-output system
loop design
optimal nonlinear adaptive control
memetic salp swarm algorithm
voltage source converter
perturbation observer
hardware experiment
MIMO temperature control in heating process system
pole-zero cancelation
temperature difference
transient response
dead time
slow-mode-based control
multi-input multi-output (MIMO) temperature system
temperature differences
non-pillar
gob-side entry retaining by roof cutting
close distance coal seams
goaf
stress distribution
semiconductor bonding equipment-grouping method
graph theory
association matrix
CFSFDP algorithm
self-learning
variable geometry turbocharger
deep reinforcement learning
deep deterministic policy gradient
flexible flow shop
limited buffer
public buffer
Hopfield neural network
local scheduling
simulated annealing algorithm
load identification
EWT
multiscale fuzzy entropy
PNN
Hybrid Attack Graph
Level-of-Resilience
stability
topology
distributed generation (DG)
INSGA-II
multi-objective optimization
potential crowding distance
static and dynamic planning
data-driven methods
coarse model
refrigeration
tunnel boring machine
roadway supporting
constitutive model
failure criterion
in-situ monitoring
power systems
complex network theory
Fast-Newman algorithm
link-addition strategy
cascading failures
flotation process
reagent dosage
time series froth image
cumulative distribution function
fault diagnosis
fault classification
fast Fourier transform (FFT)
multi-linear principal component analysis (MPCA)
uncorrelated multi-linear principal component analysis (UMPCA)
additive white Gaussian noises (AWGN)
wind turbine systems
deviation control
drilling machine
nonlinear adaptive backstepping controller disturbance observer
parameter uncertainties
wind turbine
energy conversion systems
condition monitoring
fault prognosis
resilient control
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557338303321
Gao Zhiwei  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Commemorative Issue to Celebrate the Life and Work of Prof. Roger W.H. Sargent
Commemorative Issue to Celebrate the Life and Work of Prof. Roger W.H. Sargent
Autore Gani Rafiqul
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (254 p.)
Soggetto topico Technology: general issues
Soggetto non controllato input-output model
fuzzy optimization
process synthesis
preliminary stage design
process systems engineering
energy systems engineering
process design
optimization
nonlinear programming
process monitoring
nonlinear principal component analysis
parallel neural networks
autoassociative neural network
big data
process scheduling
process system engineering
mixed-integer programming
scheduling
process control
integration
distribution
planning
oil supply chain
robust optimization
uncertainty
bio-jet diesel
co-hydrotreating
hydrodesulphurisation
hydrodeoxigenation
reactive distillation
coproduction
Lurgi syngas
cryogenic separation
methanol synthesis
LNG
symmetry
quadratic optimization
quadratically-constrained quadratic optimization
process modeling
mathematical programming
MINLP
generalized disjunctive programming
design
higher education
curricula
visualization
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557292803321
Gani Rafiqul  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematics and Engineering
Mathematics and Engineering
Autore Li Mingheng
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (306 p.)
Soggetto topico History of engineering & technology
Soggetto non controllato Phoronomics
mechanics
kinetics
kinematics
direction cosines
Euler angles
space dynamics
digital computation
control systems
control engineering
industrial cyber-physical systems
cyber-attacks
neural network
model predictive control
nonlinear chemical processes
network classification
network evolution
network symmetries
Green’s symmetry problem
network invariants
network internal dynamics
symmetry ensembles
propensities
energy
opening capability
security
smart grid
group signature
anonymous signature
autonomous vehicle
target detection
multi-sensors
fusion
YOLO
linear response eigenvalue problem
block methods
weighted Golub-Kahan-Lanczos algorithm
convergence analysis
thick restart
mining vibrating screen
theoretical rigid body model
spring failures diagnosis
amplitudes change
real-time optimization
nonlinear processes
process control
chemical reactor control
distillation column control
energy-based control
payload swing attenuation
linear matrix inequalities
quadrotor
larger Lipschitz constants
comparative advantage
transaction cost
specialized production
infra-marginal model
agricultural division of labor
velocity-slip
temperature-jump
homotopy analysis method
nanofluids
power-law fluids
state estimation
parameter estimation
moving horizon estimation
extended kalman filter
ensemble kalman filter
richards equation
agro-hydrological systems
economic model predictive control
chemical processes
responsive control
artificial intelligence
interpretability
controller verification
seashore soft soil
cement
sulfuric acid erosion
stress–strain behavior
mathematical model
Micro Grid
optimization theory
optimization
MATLAB simulation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557474903321
Li Mingheng  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling and Simulation of Energy Systems
Modeling and Simulation of Energy Systems
Autore Adams II Thomas A
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (496 p.)
Soggetto non controllato FCMP
modeling and simulation
multiphase equilibrium
modeling
polymer electrolyte membrane fuel cell (PEMFC)
dynamic simulation
simulation
multi-scale systems engineering
process simulation
cycling
time-delay
exergy loss
gas path analysis
oil and gas
solar PV
optimization
second law efficiency
auto thermal reformer
friction factor
optimal battery operation
biodiesel
energy
time-varying operation
efficiency
process synthesis and design
nonsmooth modeling
mixture ratio
supercritical CO2
dynamic optimization
technoeconomic analysis
work and heat integration
compressibility factor
multi-objective optimisation
circulating fluidized bed boiler
wind power
naphtha recovery unit
cost optimization
recompression cycle
hybrid Life Cycle Assessment
post-combustion CO2 capture
piecewise-linear function generation
solar energy
industrial process heat
kriging
statistical model
supercritical pulverized coal (SCPC)
parabolic trough
combined cycle
H2O-LiBr working pair
linearization
process integration
smith predictor
process design
analysis by synthesis
MINLP
methyl-oleate
diagnostics
offshore wind
double-effect system
shale gas condensate
geothermal energy
multi-loop control
R123
waste to energy
hybrid system
cogeneration
energy storage
energy efficiency
nonlinear mathematical programming
superstructure
concentrating solar thermal
desalination
modelling
binary cycle
organic Rankine cycle
refuse derived fuel
power plants
WHENS
process control
compressor modeling
energy systems
PTC
life cycle analysis
natural gas transportation
isentropic exponent
top-down models
thermal storage
supercritical carbon dioxide
operations
sustainable process design
hybrid solar
energy management
R245fa
building blocks
energy economics
micro gas turbine
CSP
fuel cost minimization problem
CST
palladium membrane hydrogen separation
battery degradation
optimal control
RK-ASPEN
process systems engineering
supervisory control
absorption refrigeration
concentrating solar power
shale gas condensate-to-heavier liquids
Dieng
DMR liquefaction processes
dynamic modeling
Organic Rankine Cycle (ORC)
load-following
demand response
Indonesia
ISBN 3-03921-519-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367747603321
Adams II Thomas A  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Product/Process Fingerprint in Micro Manufacturing
Product/Process Fingerprint in Micro Manufacturing
Autore Tosello Guido
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (274 p.)
Soggetto non controllato Fresnel lenses
Electro sinter forging
micro-injection moulding
surface roughness
charge relaxation time
optimization
gratings
plasma-electrolytic polishing
micro structures replication
micro-grinding
electrical discharge machining
injection molding
quality control
commercial control hardware
electrical current
damping
process monitoring
fingerprints
impact analysis
current monitoring
process control
quality assurance
surface integrity
microfabrication
microinjection moulding
electro chemical machining
superhydrophobic surface
surface modification
haptic actuator
electrical discharge machining (EDM)
surface morphology
inline metrology
optical quality control
finishing
flow length
precision injection molding
laser ablation
micro metrology
Halbach linear motor
2-step analysis
computer holography
PeP
satellite drop
process fingerprint
materials characterisation
current density
micro drilling
multi-spectral imaging
lithography
manufacturing signature
artificial compound eye
electrohydrodynamic jet printing
ECM
positioning platform
diffractive optics
bioceramics
resistance sintering
uncertainty budget
product fingerprint
confocal microscopy
spectral splitting
dental implant
desirability function
injection compression molding
electrochemical machining (ECM)
high strain rate effect
process fingerprints
ISBN 3-03921-035-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346841703321
Tosello Guido  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent Advances in Water and Wastewater Treatment with Emphasis in Membrane Treatment Operations
Recent Advances in Water and Wastewater Treatment with Emphasis in Membrane Treatment Operations
Autore Zouboulis Anastasios
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (230 p.)
Soggetto non controllato hollow fiber membranes
modeling
small sized powdered ferric hydroxide
ceramic membranes
multiphase
antimony treatment
winery effluents
fouling
municipal wastewater sludge
particle size distribution
ultrafiltration
coagulation
HA–BSA mixtures
Sb(III)
water treatment
chromate
separation
backwash duration
water crisis
adsorption
dewatering
hexavalent chromium
arsenic adsorption
polydimethylsiloxane
vacuum membrane distillation
co-treatment
desalination
arsenic
mass transfer
produced water treatment
membranes
process control
membrane resistance
granular ferric hydroxide
ozonation
Membrane Bioreactor
hollow fibre
crossflow membrane filtration
microfiltration
membrane filtration
xDLVO theory
Fe-based coagulants
wastewater treatment
cake resistance
Sb(V)
peroxone
temperature
drinking water
trickling biofilter
natural organic matter (NOM)
antimony
second cheese whey
sodium alginate
optical sensors
bioethanol recovery
membrane fouling
interaction energy
TMP
adsorption kinetics
water matrix
multivariate statistics
polluted waters
natural organic matter
operation
solution conditions
biofilm membrane bioreactor
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910669804603321
Zouboulis Anastasios  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermochemical Conversion Processes for Solid Fuels and Renewable Energies
Thermochemical Conversion Processes for Solid Fuels and Renewable Energies
Autore Alobaid Falah
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (222 p.)
Soggetto topico Research & information: general
Technology: general issues
Soggetto non controllato hydrochar
hydrothermal carbonization
biogas upgrading
CO2 capture
pressure swing adsorption
gasification
kinetic model
conversion model
reaction model
low-rank coal
tar absorption
process simulation
validation study
sensitivity analyses
lignite
lignite gasification
fluidized-bed gasifier
olivine
solar cooling
solar cooling system
TRNSYS
absorption chiller
performance and analysis
solar energy
chemical looping
biomass gasification
process control
CO2 absorption
experimental study
energy analysis
exergy analysis
CSP
PTC
ISCC
power plant
CFB combustion
operational flexibility
load transients
fluctuating electricity generation
renewables
one-dimensional SEG model
dual fluidized bed
sorbent deactivation
hydrodynamics
kinetics
fuel feeding rate
biomass
thermochemical conversion technologies
combustion
carbon capture and storage/utilization
solar-driven air-conditioning
integrated solar combined cycle
energy and exergy analyses
thermodynamic modeling
dynamic process simulation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557418803321
Alobaid Falah  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Tuning and control loop performance / / Gregory K. McMillan
Tuning and control loop performance / / Gregory K. McMillan
Autore McMillan Gregory K. <1946-, >
Edizione [Fourth edition.]
Pubbl/distr/stampa New York, [New York] (222 East 46th Street, New York, NY 10017) : , : Momentum Press, , 2015
Descrizione fisica 1 online resource (584 pages)
Disciplina 629.83
Collana Manufacturing and engineering collection
Soggetto topico Process control
Feedback control systems
Soggetto genere / forma Electronic books.
Soggetto non controllato adaptive control
advanced regulatory control
analyzer response
auto tuner
automation system
batch optimization
bioreactor control
cascade control
compressor control
control loop performance
control valve response
external reset feedback
feedforward control
inverse response
lambda tuning
level control
measurement response
pH control
PID control
PID execution rate
PID filter
PID form
PID structure
PID tuning
pressure control
process control
process disturbances
process dynamics
process interaction
process metrics
process nonlinearity
process performance
process response
proportional-integral-derivative controller
reactor control
runaway reaction
temperature control
valve deadband
valve position control
valve resolution
variable frequency drive response
wireless control
wireless response
ISBN 1-60650-171-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Fundamentals -- 1.1 Introduction -- 1.1.1 Perspective -- 1.1.2 Overview -- 1.1.3 Recommendations -- 1.2 PID controller -- 1.2.1 Proportional mode -- 1.2.2 Integral mode -- 1.2.3 Derivative mode -- 1.2.4 ARW and output limits -- 1.2.5 Control action and valve action -- 1.2.6 Operating modes -- 1.3 Loop dynamics -- 1.3.1 Types of process responses -- 1.3.2 Dead times and time constants -- 1.3.3 Open loop self-regulating and integrating process gains -- 1.3.4 Deadband, resolution, and threshold sensitivity -- 1.4 Typical mode settings -- 1.5 Typical tuning methods -- 1.5.1 Lambda tuning for self-regulating processes -- 1.5.2 Lambda tuning for integrating processes -- 1.5.3 IMC tuning for self-regulating processes -- 1.5.4 IMC tuning for integrating processes -- 1.5.5 Skogestad internal model control tuning for self-regulating processes -- 1.5.6 SIMC tuning for integrating processes -- 1.5.7 Traditional open loop tuning -- 1.5.8 Modified Ziegler-Nichols reaction curve tuning -- 1.5.9 Modified Ziegler-Nichols ultimate oscillation tuning -- 1.5.10 Quarter amplitude oscillation tuning -- 1.5.11 SCM tuning for self-regulating processes -- 1.5.12 SCM tuning for integrating processes -- 1.5.13 SCM tuning for runaway processes -- 1.5.14 Maximizing absorption of variability tuning for surge tank level -- 1.6 Test results -- 1.6.1 Performance of tuning settings on dead time dominant processes -- 1.6.2 Performance of tuning settings on near-integrating processes -- 1.6.3 Performance of tuning settings on true integrating processes -- 1.6.4 Performance of tuning settings on runaway processes -- 1.6.5 Slow oscillations from low PID gain in integrating and runaway processes -- 1.6.6 Performance of tuning methods on various processes -- Key points --
2. Unified methodology -- 2.1 Introduction -- 2.1.1 Perspective -- 2.1.2 Overview -- 2.1.3 Recommendations -- 2.2 PID features -- 2.2.1 PID form -- 2.2.2 External reset feedback -- 2.2.3 PID structure -- 2.2.4 Split range -- 2.2.5 Signal characterization -- 2.2.6 Feedforward -- 2.2.7 Decoupling -- 2.2.8 Output tracking and remote output -- 2.2.9 Setpoint filter, lead-lag, and rate limits -- 2.2.10 Enhanced PID for wireless and analyzers -- 2.3 Automation system difficulties -- 2.3.1 Open loop gain problems -- 2.3.2 Time constant problems -- 2.3.3 Dead time problems -- 2.3.4 Limit cycle problems -- 2.3.5 Noise problems -- 2.3.6 Accuracy and precision problems -- 2.4 Process objectives -- 2.4.1 Maximize turndown -- 2.4.2 Maximize safety and environmental protection -- 2.4.3 Minimize product variability -- 2.4.4 Maximize process efficiency and capacity -- 2.5 Step-by-step solutions -- 2.6 Test results -- Key points --
3. Performance criteria -- 3.1 Introduction -- 3.1.1 Perspective -- 3.1.2 Overview -- 3.1.3 Recommendations -- 3.2 Disturbance response metrics -- 3.2.1 Accumulated error -- 3.2.2 Peak error -- 3.2.3 Disturbance lag -- 3.3 Setpoint response metrics -- 3.3.1 Rise time -- 3.3.2 Overshoot and undershoot -- Key points --
4. Effect of process dynamics -- 4.1 Introduction -- 4.1.1 Perspective -- 4.1.2 Overview -- 4.1.3 Recommendations -- 4.2 Effect of mechanical design -- 4.2.1 Equipment and piping dynamics -- 4.2.2 Common equipment and piping design mistakes -- 4.3 Estimation of total dead time -- 4.4 Estimation of open loop gain -- 4.5 Major types of process responses -- 4.5.1 Self-regulating processes -- 4.5.2 Integrating processes -- 4.5.3 Runaway processes -- 4.6 Examples -- 4.6.1 Waste treatment pH loops (self-regulating process) -- 4.6.2 Boiler feedwater flow loop (self-regulating process) -- 4.6.3 Boiler drum level loop (integrating process) -- 4.6.4 Furnace pressure loop (near-integrating process) -- 4.6.5 Exothermic reactor cascade temperature loop (runaway process) -- 4.6.6 Biological reactor biomass concentration loop (runaway process) -- Key points --
5. Effect of controller dynamics -- 5.1 Introduction -- 5.1.1 Perspective -- 5.1.2 Overview -- 5.1.3 Recommendations -- 5.2 Execution rate and filter time -- 5.2.1 First effect via equation for integrated error -- 5.2.2 Second effect via equations for implied dead time -- 5.3 Smart reset action -- 5.4 Diagnosis of tuning problems -- 5.5 Furnace pressure loop example (near-integrating) -- 5.6 Test results -- Key points --
6. Effect of measurement dynamics -- 6.1 Introduction -- 6.1.1 Perspective -- 6.1.2 Overview -- 6.1.3 Recommendations -- 6.2 Wireless update rate and transmitter damping -- 6.2.1 First effect via equation for integrated error -- 6.2.2 Second effect via equations for implied dead time -- 6.3 Analyzers -- 6.4 Sensor lags and delays -- 6.5 Noise and repeatability -- 6.6 Threshold sensitivity and resolution limits -- 6.7 Rangeability (turndown) -- 6.8 Runaway processes -- 6.9 Accuracy, precision, and drift -- 6.10 Attenuation and deception -- 6.11 Examples -- 6.11.1 Waste treatment pH loop (self-regulating process) -- 6.11.2 Boiler feedwater flow loop (self-regulating process) -- 6.11.3 Boiler drum level loop (integrating process) -- 6.11.4 Furnace pressure loop (near-integrating process) -- 6.11.5 Exothermic reactor cascade temperature loop (runaway process) -- 6.11.6 Biological reactor biomass concentration loop (runaway process) -- 6.12 Test results -- Key points --
7. Effect of valve and variable frequency drive dynamics -- 7.1 Introduction -- 7.1.1 Perspective -- 7.1.2 Overview -- 7.1.3 Recommendations -- 7.2 Valve positioners and accessories -- 7.2.1 Pneumatic positioners -- 7.2.2 Digital positioners -- 7.2.3 Current to pneumatic (I/P) transducers -- 7.2.4 Solenoid valves -- 7.2.5 Volume boosters -- 7.3 Actuators, shafts, and stems -- 7.3.1 Diaphragm actuators -- 7.3.2 Piston actuators -- 7.3.3 Linkages and connections -- 7.4 VFD system design -- 7.4.1 Pulse width modulation -- 7.4.2 Cable problems -- 7.4.3 Bearing problems -- 7.4.4 Speed slip -- 7.4.5 Motor requirements -- 7.4.6 Drive controls -- 7.5 Dynamic response -- 7.5.1 Control valve response -- 7.5.2 VFD response -- 7.5.3 Dead time approximation -- 7.5.4 Deadband and resolution -- 7.5.5 When is a valve or VFD too slow? -- 7.5.6 Limit cycles -- 7.6 Installed flow characteristics and rangeability -- 7.6.1 Valve flow characteristics -- 7.6.2 Valve rangeability -- 7.6.3 VFD flow characteristics -- 7.6.4 VFD rangeability -- 7.7 Best practices -- 7.7.1 Control valve design specifications -- 7.7.2 VFD design specifications -- 7.8 Test results -- Key points --
8. Effect of disturbances -- 8.1 Introduction -- 8.1.1 Perspective -- 8.1.2 Overview -- 8.1.3 Recommendations -- 8.2 Disturbance dynamics -- 8.2.1 Load time constants -- 8.2.2 Load rate limit -- 8.2.3 Disturbance dead time -- 8.2.4 Disturbance oscillations -- 8.3 Disturbance location -- 8.4 Disturbance troubleshooting -- 8.4.1 Sources of fast oscillations -- 8.4.2 Sources of slow oscillations -- 8.5 Disturbance mitigation -- 8.6 Test results -- Key points --
9. Effect of nonlinearities -- 9.1 Introduction -- 9.1.1 Perspective -- 9.1.2 Overview -- 9.1.3 Recommendations -- 9.2 Variable gain -- 9.2.1 Cascade control -- 9.2.2 Reversals of process sign -- 9.2.3 Signal characterization -- 9.2.4 Gain scheduling -- 9.2.5 Adaptive control -- 9.2.6 Gain margin -- 9.3 Variable dead time -- 9.4 Variable time constant -- 9.5 Inverse response -- 9.6 Test results -- Key points --
10. Effect of interactions -- 10.1 Introduction -- 10.1.1 Perspective -- 10.1.2 Overview -- 10.1.3 Recommendations -- 10.2 Pairing -- 10.2.1 Relative gain array -- 10.2.2 Distillation column example -- 10.2.3 Static mixer example -- 10.2.4 Hidden control loops -- 10.2.5 Relative gains less than zero -- 10.2.6 Relative gains from zero to one -- 10.2.7 Relative gains greater than one -- 10.2.8 Model predictive control -- 10.3 Decoupling -- 10.4 Directional move suppression -- 10.5 Tuning -- 10.6 Test results -- Key points --
11. Cascade control -- 11.1 Introduction -- 11.1.1 Perspective -- 11.1.2 Overview -- 11.1.3 Recommendations -- 11.2 Configuration and tuning -- 11.3 Process control benefits -- 11.4 Process knowledge benefits -- 11.5 Watch-outs -- 11.6 Test results -- Key points --
12. Advanced regulatory control -- 12.1 Introduction -- 12.1.1 Perspective -- 12.1.2 Overview -- 12.1.3 Recommendations -- 12.2 Feedforward control -- 12.2.1 Opportunities -- 12.2.2 Watch-outs -- 12.3 Intelligent output action -- 12.3.1 Opportunities -- 12.3.2 Watch-outs -- 12.4 Intelligent integral action -- 12.4.1 Opportunities -- 12.4.2 Watch-outs -- 12.5 Dead time compensation -- 12.5.1 Opportunities -- 12.5.2 Watch-outs -- 12.6 Valve position control -- 12.6.1 Opportunities -- 12.6.2 Watch-outs -- 12.7 Override control -- 12.7.1 Opportunities -- 12.7.2 Watch-outs -- 12.8 Test results -- Key points --
13. Process control improvement -- 13.1 Introduction -- 13.1.1 Perspective -- 13.1.2 Overview -- 13.1.3 Recommendations -- 13.2 Unit operation metrics -- 13.3 Opportunities -- 13.3.1 Variability -- 13.3.2 Increasing capacity and efficiency -- 13.3.3 Effective use of models -- 13.3.4 Sizing and assessment -- 13.4 Key questions -- Key points --
14. Auto tuners and adaptive control -- 14.1 Introduction -- 14.1.1 Perspective -- 14.1.2 Overview -- 14.1.3 Recommendations -- 14.2 Methodology -- Key points --
15. Batch optimization -- 15.1 Introduction -- 15.1.1 Perspective -- 15.1.2 Overview -- 15.1.3 Recommendations -- 15.2 Cycle time -- 15.3 Profile -- 15.4 End point -- Key points --
Appendix A. Automation system performance top 10 concepts -- Appendix B. Basics of PID controllers -- Appendix C. Controller performance -- Appendix D. Discussion -- Appendix E. Enhanced PID for wireless and analyzer applications -- Appendix F. First principle process relationships -- Appendix G. Gas pressure dynamics -- Appendix H. Convective heat transfer coefficients -- Appendix I. Interactive to noninteractive time constant conversion -- Appendix. Jacket and coil temperature control -- Appendix K. PID forms and conversion of tuning settings -- Appendix L. Liquid mixing dynamics -- Appendix M. Measurement speed requirements for SIS -- References -- Bibliography -- About the author -- Index.
Record Nr. UNINA-9910459794203321
McMillan Gregory K. <1946-, >  
New York, [New York] (222 East 46th Street, New York, NY 10017) : , : Momentum Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Tuning and control loop performance / / Gregory K. McMillan
Tuning and control loop performance / / Gregory K. McMillan
Autore McMillan Gregory K. <1946-, >
Edizione [Fourth edition.]
Pubbl/distr/stampa New York, [New York] (222 East 46th Street, New York, NY 10017) : , : Momentum Press, , 2015
Descrizione fisica 1 online resource (584 pages)
Disciplina 629.83
Collana Manufacturing and engineering collection
Soggetto topico Process control
Feedback control systems
Soggetto non controllato adaptive control
advanced regulatory control
analyzer response
auto tuner
automation system
batch optimization
bioreactor control
cascade control
compressor control
control loop performance
control valve response
external reset feedback
feedforward control
inverse response
lambda tuning
level control
measurement response
pH control
PID control
PID execution rate
PID filter
PID form
PID structure
PID tuning
pressure control
process control
process disturbances
process dynamics
process interaction
process metrics
process nonlinearity
process performance
process response
proportional-integral-derivative controller
reactor control
runaway reaction
temperature control
valve deadband
valve position control
valve resolution
variable frequency drive response
wireless control
wireless response
ISBN 1-60650-171-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Fundamentals -- 1.1 Introduction -- 1.1.1 Perspective -- 1.1.2 Overview -- 1.1.3 Recommendations -- 1.2 PID controller -- 1.2.1 Proportional mode -- 1.2.2 Integral mode -- 1.2.3 Derivative mode -- 1.2.4 ARW and output limits -- 1.2.5 Control action and valve action -- 1.2.6 Operating modes -- 1.3 Loop dynamics -- 1.3.1 Types of process responses -- 1.3.2 Dead times and time constants -- 1.3.3 Open loop self-regulating and integrating process gains -- 1.3.4 Deadband, resolution, and threshold sensitivity -- 1.4 Typical mode settings -- 1.5 Typical tuning methods -- 1.5.1 Lambda tuning for self-regulating processes -- 1.5.2 Lambda tuning for integrating processes -- 1.5.3 IMC tuning for self-regulating processes -- 1.5.4 IMC tuning for integrating processes -- 1.5.5 Skogestad internal model control tuning for self-regulating processes -- 1.5.6 SIMC tuning for integrating processes -- 1.5.7 Traditional open loop tuning -- 1.5.8 Modified Ziegler-Nichols reaction curve tuning -- 1.5.9 Modified Ziegler-Nichols ultimate oscillation tuning -- 1.5.10 Quarter amplitude oscillation tuning -- 1.5.11 SCM tuning for self-regulating processes -- 1.5.12 SCM tuning for integrating processes -- 1.5.13 SCM tuning for runaway processes -- 1.5.14 Maximizing absorption of variability tuning for surge tank level -- 1.6 Test results -- 1.6.1 Performance of tuning settings on dead time dominant processes -- 1.6.2 Performance of tuning settings on near-integrating processes -- 1.6.3 Performance of tuning settings on true integrating processes -- 1.6.4 Performance of tuning settings on runaway processes -- 1.6.5 Slow oscillations from low PID gain in integrating and runaway processes -- 1.6.6 Performance of tuning methods on various processes -- Key points --
2. Unified methodology -- 2.1 Introduction -- 2.1.1 Perspective -- 2.1.2 Overview -- 2.1.3 Recommendations -- 2.2 PID features -- 2.2.1 PID form -- 2.2.2 External reset feedback -- 2.2.3 PID structure -- 2.2.4 Split range -- 2.2.5 Signal characterization -- 2.2.6 Feedforward -- 2.2.7 Decoupling -- 2.2.8 Output tracking and remote output -- 2.2.9 Setpoint filter, lead-lag, and rate limits -- 2.2.10 Enhanced PID for wireless and analyzers -- 2.3 Automation system difficulties -- 2.3.1 Open loop gain problems -- 2.3.2 Time constant problems -- 2.3.3 Dead time problems -- 2.3.4 Limit cycle problems -- 2.3.5 Noise problems -- 2.3.6 Accuracy and precision problems -- 2.4 Process objectives -- 2.4.1 Maximize turndown -- 2.4.2 Maximize safety and environmental protection -- 2.4.3 Minimize product variability -- 2.4.4 Maximize process efficiency and capacity -- 2.5 Step-by-step solutions -- 2.6 Test results -- Key points --
3. Performance criteria -- 3.1 Introduction -- 3.1.1 Perspective -- 3.1.2 Overview -- 3.1.3 Recommendations -- 3.2 Disturbance response metrics -- 3.2.1 Accumulated error -- 3.2.2 Peak error -- 3.2.3 Disturbance lag -- 3.3 Setpoint response metrics -- 3.3.1 Rise time -- 3.3.2 Overshoot and undershoot -- Key points --
4. Effect of process dynamics -- 4.1 Introduction -- 4.1.1 Perspective -- 4.1.2 Overview -- 4.1.3 Recommendations -- 4.2 Effect of mechanical design -- 4.2.1 Equipment and piping dynamics -- 4.2.2 Common equipment and piping design mistakes -- 4.3 Estimation of total dead time -- 4.4 Estimation of open loop gain -- 4.5 Major types of process responses -- 4.5.1 Self-regulating processes -- 4.5.2 Integrating processes -- 4.5.3 Runaway processes -- 4.6 Examples -- 4.6.1 Waste treatment pH loops (self-regulating process) -- 4.6.2 Boiler feedwater flow loop (self-regulating process) -- 4.6.3 Boiler drum level loop (integrating process) -- 4.6.4 Furnace pressure loop (near-integrating process) -- 4.6.5 Exothermic reactor cascade temperature loop (runaway process) -- 4.6.6 Biological reactor biomass concentration loop (runaway process) -- Key points --
5. Effect of controller dynamics -- 5.1 Introduction -- 5.1.1 Perspective -- 5.1.2 Overview -- 5.1.3 Recommendations -- 5.2 Execution rate and filter time -- 5.2.1 First effect via equation for integrated error -- 5.2.2 Second effect via equations for implied dead time -- 5.3 Smart reset action -- 5.4 Diagnosis of tuning problems -- 5.5 Furnace pressure loop example (near-integrating) -- 5.6 Test results -- Key points --
6. Effect of measurement dynamics -- 6.1 Introduction -- 6.1.1 Perspective -- 6.1.2 Overview -- 6.1.3 Recommendations -- 6.2 Wireless update rate and transmitter damping -- 6.2.1 First effect via equation for integrated error -- 6.2.2 Second effect via equations for implied dead time -- 6.3 Analyzers -- 6.4 Sensor lags and delays -- 6.5 Noise and repeatability -- 6.6 Threshold sensitivity and resolution limits -- 6.7 Rangeability (turndown) -- 6.8 Runaway processes -- 6.9 Accuracy, precision, and drift -- 6.10 Attenuation and deception -- 6.11 Examples -- 6.11.1 Waste treatment pH loop (self-regulating process) -- 6.11.2 Boiler feedwater flow loop (self-regulating process) -- 6.11.3 Boiler drum level loop (integrating process) -- 6.11.4 Furnace pressure loop (near-integrating process) -- 6.11.5 Exothermic reactor cascade temperature loop (runaway process) -- 6.11.6 Biological reactor biomass concentration loop (runaway process) -- 6.12 Test results -- Key points --
7. Effect of valve and variable frequency drive dynamics -- 7.1 Introduction -- 7.1.1 Perspective -- 7.1.2 Overview -- 7.1.3 Recommendations -- 7.2 Valve positioners and accessories -- 7.2.1 Pneumatic positioners -- 7.2.2 Digital positioners -- 7.2.3 Current to pneumatic (I/P) transducers -- 7.2.4 Solenoid valves -- 7.2.5 Volume boosters -- 7.3 Actuators, shafts, and stems -- 7.3.1 Diaphragm actuators -- 7.3.2 Piston actuators -- 7.3.3 Linkages and connections -- 7.4 VFD system design -- 7.4.1 Pulse width modulation -- 7.4.2 Cable problems -- 7.4.3 Bearing problems -- 7.4.4 Speed slip -- 7.4.5 Motor requirements -- 7.4.6 Drive controls -- 7.5 Dynamic response -- 7.5.1 Control valve response -- 7.5.2 VFD response -- 7.5.3 Dead time approximation -- 7.5.4 Deadband and resolution -- 7.5.5 When is a valve or VFD too slow? -- 7.5.6 Limit cycles -- 7.6 Installed flow characteristics and rangeability -- 7.6.1 Valve flow characteristics -- 7.6.2 Valve rangeability -- 7.6.3 VFD flow characteristics -- 7.6.4 VFD rangeability -- 7.7 Best practices -- 7.7.1 Control valve design specifications -- 7.7.2 VFD design specifications -- 7.8 Test results -- Key points --
8. Effect of disturbances -- 8.1 Introduction -- 8.1.1 Perspective -- 8.1.2 Overview -- 8.1.3 Recommendations -- 8.2 Disturbance dynamics -- 8.2.1 Load time constants -- 8.2.2 Load rate limit -- 8.2.3 Disturbance dead time -- 8.2.4 Disturbance oscillations -- 8.3 Disturbance location -- 8.4 Disturbance troubleshooting -- 8.4.1 Sources of fast oscillations -- 8.4.2 Sources of slow oscillations -- 8.5 Disturbance mitigation -- 8.6 Test results -- Key points --
9. Effect of nonlinearities -- 9.1 Introduction -- 9.1.1 Perspective -- 9.1.2 Overview -- 9.1.3 Recommendations -- 9.2 Variable gain -- 9.2.1 Cascade control -- 9.2.2 Reversals of process sign -- 9.2.3 Signal characterization -- 9.2.4 Gain scheduling -- 9.2.5 Adaptive control -- 9.2.6 Gain margin -- 9.3 Variable dead time -- 9.4 Variable time constant -- 9.5 Inverse response -- 9.6 Test results -- Key points --
10. Effect of interactions -- 10.1 Introduction -- 10.1.1 Perspective -- 10.1.2 Overview -- 10.1.3 Recommendations -- 10.2 Pairing -- 10.2.1 Relative gain array -- 10.2.2 Distillation column example -- 10.2.3 Static mixer example -- 10.2.4 Hidden control loops -- 10.2.5 Relative gains less than zero -- 10.2.6 Relative gains from zero to one -- 10.2.7 Relative gains greater than one -- 10.2.8 Model predictive control -- 10.3 Decoupling -- 10.4 Directional move suppression -- 10.5 Tuning -- 10.6 Test results -- Key points --
11. Cascade control -- 11.1 Introduction -- 11.1.1 Perspective -- 11.1.2 Overview -- 11.1.3 Recommendations -- 11.2 Configuration and tuning -- 11.3 Process control benefits -- 11.4 Process knowledge benefits -- 11.5 Watch-outs -- 11.6 Test results -- Key points --
12. Advanced regulatory control -- 12.1 Introduction -- 12.1.1 Perspective -- 12.1.2 Overview -- 12.1.3 Recommendations -- 12.2 Feedforward control -- 12.2.1 Opportunities -- 12.2.2 Watch-outs -- 12.3 Intelligent output action -- 12.3.1 Opportunities -- 12.3.2 Watch-outs -- 12.4 Intelligent integral action -- 12.4.1 Opportunities -- 12.4.2 Watch-outs -- 12.5 Dead time compensation -- 12.5.1 Opportunities -- 12.5.2 Watch-outs -- 12.6 Valve position control -- 12.6.1 Opportunities -- 12.6.2 Watch-outs -- 12.7 Override control -- 12.7.1 Opportunities -- 12.7.2 Watch-outs -- 12.8 Test results -- Key points --
13. Process control improvement -- 13.1 Introduction -- 13.1.1 Perspective -- 13.1.2 Overview -- 13.1.3 Recommendations -- 13.2 Unit operation metrics -- 13.3 Opportunities -- 13.3.1 Variability -- 13.3.2 Increasing capacity and efficiency -- 13.3.3 Effective use of models -- 13.3.4 Sizing and assessment -- 13.4 Key questions -- Key points --
14. Auto tuners and adaptive control -- 14.1 Introduction -- 14.1.1 Perspective -- 14.1.2 Overview -- 14.1.3 Recommendations -- 14.2 Methodology -- Key points --
15. Batch optimization -- 15.1 Introduction -- 15.1.1 Perspective -- 15.1.2 Overview -- 15.1.3 Recommendations -- 15.2 Cycle time -- 15.3 Profile -- 15.4 End point -- Key points --
Appendix A. Automation system performance top 10 concepts -- Appendix B. Basics of PID controllers -- Appendix C. Controller performance -- Appendix D. Discussion -- Appendix E. Enhanced PID for wireless and analyzer applications -- Appendix F. First principle process relationships -- Appendix G. Gas pressure dynamics -- Appendix H. Convective heat transfer coefficients -- Appendix I. Interactive to noninteractive time constant conversion -- Appendix. Jacket and coil temperature control -- Appendix K. PID forms and conversion of tuning settings -- Appendix L. Liquid mixing dynamics -- Appendix M. Measurement speed requirements for SIS -- References -- Bibliography -- About the author -- Index.
Record Nr. UNINA-9910787493803321
McMillan Gregory K. <1946-, >  
New York, [New York] (222 East 46th Street, New York, NY 10017) : , : Momentum Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui