top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bayes Factors for Forensic Decision Analyses with R [[electronic resource] /] / by Silvia Bozza, Franco Taroni, Alex Biedermann
Bayes Factors for Forensic Decision Analyses with R [[electronic resource] /] / by Silvia Bozza, Franco Taroni, Alex Biedermann
Autore Bozza Silvia
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, : Springer Nature, 2022
Descrizione fisica 1 online resource (XII, 187 p. 22 illus., 5 illus. in color.)
Disciplina 519.5
Collana Springer Texts in Statistics
Soggetto topico Statistics
Mathematical statistics—Data processing
Forensic sciences
Medical jurisprudence
Forensic psychology
Social sciences—Statistical methods
Statistical Theory and Methods
Statistics and Computing
Forensic Science
Forensic Medicine
Forensic Psychology
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Estadística bayesiana
Processament de dades
Criminalística
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Bayes factor
scientific evidence
decision making
forensic science
uncertainty management
probability theory
forensic
decision analysis
Bayesian modeling
R
Bayesian statistics
probabilistic inference
ISBN 3-031-09839-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction to the Bayes factor and decision analysis -- Chapter 2: Bayes factor for model choice -- Chapter 3: Bayes factor for evaluative purposes -- Chapter 4: Bayes factor for investigative purposes.
Record Nr. UNISA-996495166503316
Bozza Silvia  
Cham, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Bayes Factors for Forensic Decision Analyses with R / / by Silvia Bozza, Franco Taroni, Alex Biedermann
Bayes Factors for Forensic Decision Analyses with R / / by Silvia Bozza, Franco Taroni, Alex Biedermann
Autore Bozza Silvia
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, : Springer Nature, 2022
Descrizione fisica 1 online resource (XII, 187 p. 22 illus., 5 illus. in color.)
Disciplina 519.5
Collana Springer Texts in Statistics
Soggetto topico Statistics
Mathematical statistics—Data processing
Forensic sciences
Medical jurisprudence
Forensic psychology
Social sciences—Statistical methods
Statistical Theory and Methods
Statistics and Computing
Forensic Science
Forensic Medicine
Forensic Psychology
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Estadística bayesiana
Processament de dades
Criminalística
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Bayes factor
scientific evidence
decision making
forensic science
uncertainty management
probability theory
forensic
decision analysis
Bayesian modeling
R
Bayesian statistics
probabilistic inference
ISBN 3-031-09839-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction to the Bayes factor and decision analysis -- Chapter 2: Bayes factor for model choice -- Chapter 3: Bayes factor for evaluative purposes -- Chapter 4: Bayes factor for investigative purposes.
Record Nr. UNINA-9910623993803321
Bozza Silvia  
Cham, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data Analytics and Applications of the Wearable Sensors in Healthcare
Data Analytics and Applications of the Wearable Sensors in Healthcare
Autore Syed Abdul Shabbir
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (498 p.)
Soggetto topico Humanities
Social interaction
Soggetto non controllato eHealth
wearable
monitoring
services
integration
IoT
Telemedicine
wearable sensors
multivariate analysis
longitudinal study
functional decline
exercise intervention
accidental falls
fall detection
real-world
signal analysis
performance measures
non-wearable sensors
accelerometers
cameras
machine learning
smart textiles
healthcare
talking detection
activity recognition and monitoring
patient health and state monitoring
wearable sensing
orientation-invariant sensing
motion sensors
accelerometer
gyroscope
magnetometer
pattern classification
artificial intelligence
supervised machine learning
predictive analytics
hemodialysis
non-contact sensor
heart rate
respiration rate
heart rate variability
time-domain features
frequency-domain features
principal component analysis
behaviour analysis
classifier efficiency
personal risk detection
one-class classification
actigraphy
encoding
data compression
denoising
edge computing
signal processing
wearables
activity monitoring
citizen science
cluster analysis
physical activity
sedentary behavior
walking
energy expenditure
wearable device
impedance pneumography
neural network
mechanocardiogram (MCG)
smart clothes
heart failure (HF)
left ventricular ejection fraction (LVEF)
technology acceptance model (TAM)
physical activity classification
free-living
GENEactiv accelerometer
Gaussian mixture model
hidden Markov model
wavelets
skill assessment
deep learning
LSTM
state space model
probabilistic inference
latent features
human activity recognition
MIMU
genetic algorithm
feature selection
classifier optimization
bispectrum
entropy
feature extraction
heat stroke
filtering algorithm
physiological parameters
exercise experiment
biomedical signal processing
wearable biomedical sensors
wireless sensor network
respiratory monitoring
optoelectronic plethysmography
biofeedback
biomedical technology
exercise therapy
orthopedics
mobile health
qualitative
human factors
inertial measurement unit
disease prevention
occupational healthcare
P-Ergonomics
precision ergonomics
musculoskeletal disorders
wellbeing at work
electrocardiogram
conductive gels
noncontact electrode
myocardial ischemia
pacemaker
ventricular premature contraction
upper extremity
motion
action research arm test
activities of daily living
IoT wearable monitor
health
posture analysis
spinal posture
wearable sensor
embedded system
recurrent neural networks
physical workload
wearable systems for healthcare
machine learning for real-time applications
actigraph
body worn sensors
clothing sensors
cross correlation analysis
healthcare movement sensing
wearable devices
calibration
inertial measurement units
human movement
physical activity type
real-life
GPS
GIS
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557288603321
Syed Abdul Shabbir  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui