top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advancements in Biomass Feedstock Preprocessing: Conversion Ready Feedstocks
Advancements in Biomass Feedstock Preprocessing: Conversion Ready Feedstocks
Autore Richard Hess J
Pubbl/distr/stampa Frontiers Media SA, 2020
Descrizione fisica 1 electronic resource (319 p.)
Soggetto topico Civil engineering, surveying & building
Soggetto non controllato biomass variability
conversion-ready feedstocks
preprocessing
blending
fractionation
sorting
resource diversity
integrated biorefineries
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Advancements in Biomass Feedstock Preprocessing
Record Nr. UNINA-9910557633103321
Richard Hess J  
Frontiers Media SA, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Innovations in Photogrammetry and Remote Sensing : Modern Sensors, New Processing Strategies and Frontiers in Applications
Innovations in Photogrammetry and Remote Sensing : Modern Sensors, New Processing Strategies and Frontiers in Applications
Autore Pirotti Francesco
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (216 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato VHR tri-stereo satellite imagery
digital elevation model
isolated objects
dense image matching
change detection
natural disasters
deep learning
threshold selection
optical flow estimation
Structure from Motion (SfM)
3D reconstruction
noise estimation
point clouds
roughness
surface reconstruction
mesh model
visibility constraints
volumetric methods
dense point cloud
multiple view stereo (MVS)
dense image matching (DIM)
photogrammetry
computer vision
Copernicus
Sentinel-1
Sentinel-2
InSAR
damage proxy map
Beirut
Lebanon
explosion
radiometric calibration
modeling
geometric error
high-precision calibration
preprocessing
enhancement
point cloud
image processing
image histogram
UAV
camera calibration
GNSS-assisted block orientation
dome effect
Monte Carlo simulation
soil moisture content
artificial neural network
sample optimization
synthetic aperture radar
optical remote sensing image
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Innovations in Photogrammetry and Remote Sensing
Record Nr. UNINA-9910576883503321
Pirotti Francesco  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning Methods with Noisy, Incomplete or Small Datasets
Machine Learning Methods with Noisy, Incomplete or Small Datasets
Autore Solé-Casals Jordi
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (316 p.)
Soggetto topico Information technology industries
Soggetto non controllato open contours
similarly shaped fish species
Discrete Cosine Transform (DCT)
Discrete Fourier Transform (DFT)
Extreme Learning Machines (ELM)
feature engineering
small data-sets
optimization
machine learning
preprocessing
image generation
weighted interpolation map
binarization
single sample per person
root canal measurement
multifrequency impedance
data augmentation
neural network
functional magnetic resonance imaging
independent component analysis
deep learning
recurrent neural network
functional connectivity
episodic memory
small sample learning
feature selection
noise elimination
space consistency
label correlations
empirical mode decomposition
sparse representations
tensor decomposition
tensor completion
machine translation
pairwise evaluation
educational data
small datasets
noisy datasets
smart building
Internet of Things (IoT)
Markov Chain Monte Carlo (MCMC)
ontology
graph model
Artificial Neural Network
Discriminant Analysis
dengue
feature extraction
sound event detection
non-negative matrix factorization
ultrasound images
shadow detection
shadow estimation
auto-encoders
semi-supervised learning
prediction
feature importance
feature elimination
hierarchical clustering
Parkinson’s disease
few-shot learning
permutation-variable importance
topological data analysis
persistent entropy
support-vector machine
data science
intelligent decision support
social vulnerability
gender-gap
digital-gap
COVID19
policy-making support
artificial intelligence
imperfect dataset
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557324603321
Solé-Casals Jordi  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui