top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Claim Models: Granular Forms and Machine Learning Forms
Claim Models: Granular Forms and Machine Learning Forms
Autore Taylor Greg
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (108 p.)
Soggetto topico Pharmaceutical chemistry and technology
Soggetto non controllato actuarial
claim watching
classification and regression trees
gradient boosting
granular models
individual claims reserving
individual models
loss reserving
machine learning
n/a
neural networks
payments per claim incurred
predictive modeling
risk pricing
ISBN 3-03928-665-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Claim Models
Record Nr. UNINA-9910404090203321
Taylor Greg  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Feature Papers of Forecasting
Feature Papers of Forecasting
Autore Leva Sonia
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (186 p.)
Soggetto topico Research and information: general
Soggetto non controllato (REG) ARIMA
baseline prediction
Bates-Granger weights
behind-the-meter PV
bias correction
bus service
bus travel time
business to business sales prediction
cost estimating
costumer relation management
COVID-19
deep learning
Direct Normal Irradiance (DNI)
DNI attenuation Index (DAI)
ETS
evaluation
forecast
forecasting
Google Trends indices
Himalayan region
Hodrick-Prescott trend
IFS/ECMWF
intermittent rivers
learning curve
logistic map
machine learning
meteorological radar data
microsoft azure machine-learning service
n/a
nowcast
optical flow
persistence
predictive modeling
production cost
PV output power estimation
PV-load decoupling
SARS-CoV-2
semi-empirical model
snow-fed rivers
streamflow forecast verification
sustainable urban mobility plan
time series
transit systems
travel time forecasting
uniform weights
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557390403321
Leva Sonia  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wildfire Hazard and Risk Assessment
Wildfire Hazard and Risk Assessment
Autore Meldrum James R
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (222 p.)
Soggetto topico Biology, life sciences
Forestry & related industries
Research & information: general
Soggetto non controllato area difference index
colour coding
communication
community vulnerability
defensible space
disaster
erosion
fire
fire behavior
fire hazard
fire spread model
fire spread models
fire suppression costs
firefighter safety
flammap
forest fire
fuels
GEDI
global sensitivity analysis
Google Earth Engine
land use
LANDFIRE
Landsat
LCES
lidar
LiDAR
mapping
mitigation
modeling
Monte Carlo
Monte Carlo simulation
natural hazards
object-oriented image analysis
ordinal categorization
palette
parcel-level risk
post-fire analysis
Potential fire Operational Delineations
precision
predictive modeling
prescribed fire
principal components analysis
rapid assessment
recall
remote sensing
risk
risk assessment
risk mitigation
safe separation distance
safety zones
sensitivity analysis
Sentinel
Sentinel-2
simulation
spatial modeling
statistics
structure loss
surrogate modeling
transmission risk
water supply
wildfire
wildfire containment
wildfire management
wildfire risk
wildland-urban interface
WUI
Zillow
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566472703321
Meldrum James R  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui