top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Empirical Finance
Empirical Finance
Autore Hamori Shigeyuki
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (276 p.)
Soggetto non controllato algorithmic trading
ARDL
asset pricing model
asymmetric dependence
ATR
bagging
bank credit
bankruptcy prediction
boosting
causality-in-variance
city banks
cointegration
convolutional neural networks
copula
credit risk
cross-correlation function
crude oil futures prices forecasting
currency crisis
data mining
deep learning
deep neural network
dependence structure
earnings management
earnings manipulation
earnings quality
ensemble learning
exchange rate
exports
financial and non-financial variables
financial market stress
flight to quality
futures market
global financial crisis
gold return
housing and stock markets
housing loans
housing price
inertia
initial public offering
institutional investors' shareholdings
IPO
Japanese yen
latency
liquidity risk premium
LSTM
MACD
machine learning
market microstructure
n/a
natural gas
neural network
panel data model
piecewise regression model
predictive accuracy
price discovery
quantile regression
random forest
random forests
real estate development loans
robust regression
short-term forecasting
spark spread
statistical arbitrage
stop loss
structural break
SVM
take profit
text mining
text similarity
TVP-VAR model
US dollar
utility of international currency
Vietnam
volatility
wavelet transform
wholesale electricity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346675203321
Hamori Shigeyuki  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing / Hyung-Sup Jung, Saro Lee
Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing / Hyung-Sup Jung, Saro Lee
Autore Jung Hyung-Sup
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (438 p.)
Soggetto topico Pharmaceutical chemistry and technology
Soggetto non controllato artificial neural network
model switching
sensitivity analysis
neural networks
logit boost
Qaidam Basin
land subsidence
land use/land cover (LULC)
naïve Bayes
multilayer perceptron
convolutional neural networks
single-class data descriptors
logistic regression
feature selection
mapping
particulate matter 10 (PM10)
Bayes net
gray-level co-occurrence matrix
multi-scale
Logistic Model Trees
classification
Panax notoginseng
large scene
coarse particle
grayscale aerial image
Gaofen-2
environmental variables
variable selection
spatial predictive models
weights of evidence
landslide prediction
random forest
boosted regression tree
convolutional network
Vietnam
model validation
colorization
data mining techniques
spatial predictions
SCAI
unmanned aerial vehicle
high-resolution
texture
spatial sparse recovery
landslide susceptibility map
machine learning
reproducible research
constrained spatial smoothing
support vector machine
random forest regression
model assessment
information gain
ALS point cloud
bagging ensemble
one-class classifiers
leaf area index (LAI)
landslide susceptibility
landsat image
ionospheric delay constraints
spatial spline regression
remote sensing image segmentation
panchromatic
Sentinel-2
remote sensing
optical remote sensing
materia medica resource
GIS
precise weighting
change detection
TRMM
traffic CO
crop
training sample size
convergence time
object detection
gully erosion
deep learning
classification-based learning
transfer learning
landslide
traffic CO prediction
hybrid model
winter wheat spatial distribution
logistic
alternating direction method of multipliers
hybrid structure convolutional neural networks
geoherb
predictive accuracy
real-time precise point positioning
spectral bands
ISBN 9783039212163
3039212168
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367564103321
Jung Hyung-Sup  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui