Large Grid-Connected Wind Turbines
| Large Grid-Connected Wind Turbines |
| Autore | Muyeen S M |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 online resource (212 p.) |
| Soggetto non controllato |
automatic generation control
battery energy storage system control wind turbine de-loading DFIG-based wind farm distance protection Distributed-Flexible AC Transmission system (D-FACTS) Distribution Static Synchronous Compensator (D-STATCOM) Distribution Static VAr Compensator(D-SVC) doubly fed induction generator (DFIG) doubly-fed induction generator droop curve fault characteristics fault current limiters fault diagnosis and isolation Fault Ride Through (FRT) fault ride-through fractional order proportional-integral-differential controller fuzzy logic controller (FLC) hardware-in-the-loop kinetic energy storage large-scale wind farm load frequency control low voltage ride through (LVRT) LPV observer multi-objective artificial bee colony algorithm multiple sensor faults optimal control optimization permanent magnet synchronous generator PI controller power smoothing power system power wind turbine prediction intervals primary frequency control real fault cases reliability of electricity supplies reserve power rotor inertia series dynamic braking resistor squirrel cage induction generator (SCIG) superconductor transmission line wake effect wavelet neural network wind farm wind forecast wind power forecasting wind turbine allocation |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346691203321 |
Muyeen S M
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
| Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management |
| Autore | Kisi Ozgur |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (238 p.) |
| Soggetto topico | Research & information: general |
| Soggetto non controllato |
additive regression
artificial intelligence artificial neural network atmospheric reanalysis bagging Bayesian model averaging big data calibration CWP dagging Daymet V3 EEFlux ensemble modeling extension principle flood routing fuzzy sets and systems Google Earth Engine Govindpur groundwater groundwater level prediction hydroinformatics hydrologic model improved extreme learning machine (IELM) irrigation performance Kernel extreme learning machines M5 model tree machine learning multivariate adaptive regression spline Muskingum method n/a NDVI neural network nitrogen compound nitrogen prediction non-linear modeling PACF particle swarm optimization prediction intervals prediction models principal component analysis random subspace rotation forest satellite precipitation sensitivity analysis shortwave radiation flux density South Korea spatiotemporal variation streamflow forecasting streamflow simulation support vector machine sustainability sustainable development SVM-LF SVM-RF uncertainty uncertainty analysis ungauged basin WANN water conservation water resources |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557448103321 |
Kisi Ozgur
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||