top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Large Grid-Connected Wind Turbines
Large Grid-Connected Wind Turbines
Autore Muyeen S M
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (212 p.)
Soggetto non controllato automatic generation control
battery energy storage system
control wind turbine
de-loading
DFIG-based wind farm
distance protection
Distributed-Flexible AC Transmission system (D-FACTS)
Distribution Static Synchronous Compensator (D-STATCOM)
Distribution Static VAr Compensator(D-SVC)
doubly fed induction generator (DFIG)
doubly-fed induction generator
droop curve
fault characteristics
fault current limiters
fault diagnosis and isolation
Fault Ride Through (FRT)
fault ride-through
fractional order proportional-integral-differential controller
fuzzy logic controller (FLC)
hardware-in-the-loop
kinetic energy storage
large-scale wind farm
load frequency control
low voltage ride through (LVRT)
LPV observer
multi-objective artificial bee colony algorithm
multiple sensor faults
optimal control
optimization
permanent magnet synchronous generator
PI controller
power smoothing
power system
power wind turbine
prediction intervals
primary frequency control
real fault cases
reliability of electricity supplies
reserve power
rotor inertia
series dynamic braking resistor
squirrel cage induction generator (SCIG)
superconductor
transmission line
wake effect
wavelet neural network
wind farm
wind forecast
wind power forecasting
wind turbine allocation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346691203321
Muyeen S M  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Autore Kisi Ozgur
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (238 p.)
Soggetto topico Research & information: general
Soggetto non controllato additive regression
artificial intelligence
artificial neural network
atmospheric reanalysis
bagging
Bayesian model averaging
big data
calibration
CWP
dagging
Daymet V3
EEFlux
ensemble modeling
extension principle
flood routing
fuzzy sets and systems
Google Earth Engine
Govindpur
groundwater
groundwater level prediction
hydroinformatics
hydrologic model
improved extreme learning machine (IELM)
irrigation performance
Kernel extreme learning machines
M5 model tree
machine learning
multivariate adaptive regression spline
Muskingum method
n/a
NDVI
neural network
nitrogen compound
nitrogen prediction
non-linear modeling
PACF
particle swarm optimization
prediction intervals
prediction models
principal component analysis
random subspace
rotation forest
satellite precipitation
sensitivity analysis
shortwave radiation flux density
South Korea
spatiotemporal variation
streamflow forecasting
streamflow simulation
support vector machine
sustainability
sustainable development
SVM-LF
SVM-RF
uncertainty
uncertainty analysis
ungauged basin
WANN
water conservation
water resources
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557448103321
Kisi Ozgur  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui