top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Autore Bazi Yakoub
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (438 p.)
Soggetto topico Research and information: general
Soggetto non controllato 3D information
adversarial learning
anomaly detection
Batch Normalization
building damage assessment
CNN
conditional random field (CRF)
convolution
convolutional neural network
convolutional neural networks
CycleGAN
data augmentation
deep convolutional networks
deep features
deep learning
densenet
DenseUNet
depthwise atrous convolution
desert
despeckling
edge enhancement
EfficientNets
faster region-based convolutional neural network (FRCNN)
feature engineering
feature fusion
framework
generative adversarial networks
Generative Adversarial Networks
global convolution network
hand-crafted features
high spatial resolution remote sensing
high-resolution remote sensing image
high-resolution remote sensing imagery
high-resolution representations
hyperspectral image classification
image classification
infrastructure
ISPRS vaihingen
Landsat-8
lifting scheme
LSTM
LSTM network
machine learning
mapping
min-max entropy
misalignments
monitoring
multi-scale
nearest feature selector
neural networks
object detection
object-based
Open Street Map
open-set domain adaptation
orthophoto
orthophotos registration
orthophotos segmentation
OUDN algorithm
outline extraction
pareto ranking
pavement markings
pixel-wise classification
plant disease detection
post-disaster
precision agriculture
remote sensing
remote sensing imagery
result correction
road
road extraction
SAR
satellite
satellites
scene classification
semantic segmentation
Sentinel-1
single-shot
single-shot multibox detector (SSD)
Sinkhorn loss
sub-pixel
super-resolution
synthetic aperture radar
text image matching
triplet networks
two stream residual network
U-Net
UAV multispectral images
Unmanned Aerial Vehicles (UAV)
unsupervised segmentation
urban forests
visibility
water identification
water index
wildfire detection
xBD
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557747903321
Bazi Yakoub  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Agricultural Irrigation
Agricultural Irrigation
Autore Montazar Aliasghar
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (172 p.)
Soggetto topico Biology, life sciences
Soggetto non controllato available water capacity
benchmarking
biomass production
center-pivot irrigation
climate change adaptation
cover crop
crop evapotranspiration
deficit irrigation
downy mildew
drip irrigation
energy audit
evaluation of performance
farming data
global sensitivity analysis
greenhouse gas emission
infiltration depth
irrigated crops
irrigation
irrigation management
irrigation water regimes
irrigation water use efficiency
leaf mineral composition
lettuce production
life cycle assessment
Mediterranean region
model simulation
monthly changes
mulch
net irrigation requirements
optimal irrigation time
organic production
performance indicator
precision agriculture
principal component analysis
pumping plants
row cover
salinization
semi-arid regions
site-specific irrigation
slope gradient
spinach
temperature variations
tomato fruit yield
total yield
treated wastewater irrigation
water application rate
ISBN 3-03921-923-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367740803321
Montazar Aliasghar  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Agricultural Water Conservation: Tools, Strategies, and Practices
Agricultural Water Conservation: Tools, Strategies, and Practices
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (242 p.)
Soggetto topico Biology, life sciences
Research & information: general
Technology, engineering, agriculture
Soggetto non controllato alluvial aquifer
analytical formula
application efficiency
AquaCrop model
Asparagus officinalis L.
autonomous landscape irrigation
BEARS
bushland
climate
clogging
Colorado River Basin
conservation agriculture
cultivars
digestate liquid fraction
drip irrigation
drought
eddy covariance
efficient design
emitter
environments
Ethiopia
evapotranspiration
forage
fruit quality
gas exchange
gravity irrigation
groundwater
groundwater management
growing seasons
Hargreaves and Samani evapotranspiration model
hydrocyclone
irrigation
irrigation management strategy
irrigation water management
IWUE
Lower Mississippi River Valley
lysimeter ET assessment
Mississippi Delta
n/a
Ogallala aquifer region
optimum water use
partial root drying
precision agriculture
remote sensing
row crops
salinity
sandy soil
scenarios
sensible and latent heat fluxes
small-scale irrigation
smart controller
soil mulch
solar MajiPump
spears yield
squash
surface renewal method
tea plantation
tolerant
wastewater
water and crop productivity
water conservation
water conservation adoption
water deficit
water productivity
water requirements
water use efficiency
water-use efficiency
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Agricultural Water Conservation
Record Nr. UNINA-9910557482703321
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of Remote Image Capture System in Agriculture
Applications of Remote Image Capture System in Agriculture
Autore Molina Martínez José Miguel
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (310 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato 3D model
aerial photography
agricultural robot
agriculture
Agriculture 4.0
andosols
applications
artificial intelligence
automatic tomato harvesting
banana plantation
berries counting
budding rate
Cabernet Sauvignon
canopy temperature
classification performance
coffee leaf rust
convolutional neural network
decision making
deep learning
digital agriculture
digital image correlation
Dilated CNN
failure strain
fertirrigation
finite element method
Fourth Industrial Revolution
frequency-domain reflectometry
geometric consistency
grape yield estimate
greenhouse
Hill-Tsai failure criterion
ICP
image processing
land use
large-scale
low-cost thermography
machine learning
machine learning algorithms
machine learning regression
mixed pixels
moisture sensors
n/a
NDVI
non-transpiration baseline
non-water-stressed baselines
normalized difference vegetation index
Normalized Difference Vegetation Index
normalized difference water index
online operation
optimization algorithm
Panama TR4
Parrot Sequoia
pasture quality index
point clouds
precision agriculture
precision viticulture
Prunus avium L.
radiometric consistency
randomizable filtered classifier
reference evapotranspiration
reflectance maps
remote images
remote sensing
sandstone
segmentation
Sentinel-2
soil moisture
spatial vision
spectrometry
stem water potential
supplementation
SVM
systematic mapping study
teaching-learning
thermal indexes
total leaf area
U-Net
UAV
vegetation indices
water stress
winter wheat mapping
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557895803321
Molina Martínez José Miguel  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial Neural Networks in Agriculture
Artificial Neural Networks in Agriculture
Autore Kujawa Sebastian
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (283 p.)
Soggetto topico Biology, life sciences
Research & information: general
Technology, engineering, agriculture
Soggetto non controllato agroecology
apparent soil electrical conductivity (ECa)
artificial neural network
artificial neural network (ANN)
artificial neural networks
automated harvesting
average degree of coverage
big data
classification
CLQ
CNN
convolutional neural networks
corn canopy cover
corn plant density
correlation filter
coverage unevenness coefficient
crop models
crop yield prediction
cropland mapping
decision supporting systems
deep learning
deoxynivalenol
dynamic model
dynamic response
dynamic time warping
EBK
EM38
environment
Faster-RCNN
ferulic acid
food production
GA-BPNN
GPP-driven spectral model
grain
Grain weevil identification
health
high-resolution imagery
high-throughput phenotyping
hybrid feature extraction
hydroponics
image classification
image identification
LSTM
machine learning
magnetic susceptibility (MS)
Medjool dates
memory
metric
MLP network
model application for sustainable agriculture
modeling
NARX neural networks
neural image analysis
neural modelling classification
neural network
neural networks
nivalenol
oil palm tree
optimization
paddy rice mapping
Phoenix dactylifera L.
plant growth
precision agriculture
predicting
recursive feature elimination wrapper
remote sensing for agriculture
rice phenology
root zone temperature
sensitivity analysis
similarity
soil and plant nutrition
soybean
time series forecasting
transfer learning
UAV
vegetation indices
weakly supervised learning
weeds
winter wheat
yield gap
yield prediction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557509803321
Kujawa Sebastian  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Convergence of Intelligent Data Acquisition and Advanced Computing Systems
Convergence of Intelligent Data Acquisition and Advanced Computing Systems
Autore Stamatescu Grigore
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (189 p.)
Soggetto topico Energy industries & utilities
Technology: general issues
Soggetto non controllato artificial neural network
atrous spatial pyramid pooling
attention gate
automotive
black box modeling
clock signal
CNN (Convolutional neural networks)
component
consumed and dissipated power
current
data acquisition
data classification
data consensus
deep learning
deep sparse auto-encoders
delay
demand response
detection
distributed systems
educational robotics
electric power train
electric vehicle
embedded systems
energy efficiency
FPGA-designing
heterogenous embedded systems
hidden faults
intelligent charging
intelligent data processing
Internet of Things
linear model
linear programming
logical and power-oriented checkability
measurements
medical diagnosis
n/a
ODE Solver
OpenCL
optimization
parallel/multi-core computing
Parareal
pavement defects
power train
precision agriculture
PSO algorithm
relevant data extraction
residual connection
ROS
safety-related system
sensing systems
sensor
sensors
signals
smart building
smart grid
smart parking
STEM
system identification
temperature and current consumption sensors
time delay estimation
trajectory planning
unmanned aerial vehicles
wireless sensor networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557333503321
Stamatescu Grigore  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019
Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019
Autore Matese Alessandro
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (184 p.)
Soggetto topico Biology, life sciences
Forestry & related industries
Research & information: general
Soggetto non controllato Accuracy Assessment
ancient trees measurement
biomass evaluation
burn severity
Castanea sativa
central Oregon
classification
convolutional neural network
convolutional neural network (CNN)
ecohydrology
end-to-end learning
establishment survey
forest fire
forest inventory
forest modeling
forest regeneration
Forest Sampling
forestry applications
hyperspectral imagery
image processing
juniper woodlands
leaf-off
leaf-on
machine learning
Mauritia flexuosa
multispectral classification
multispectral image
object-based image analysis (OBIA)
photogrammetric point clouds
Photogrammetry
precision agriculture
precision forestry
rangelands
Reference Data
reforestation
remote sensing
Remote Sensing
reproduction
RGB imagery
Robinia pseudoacacia L.
seedling detection
seedling stand inventorying
semantic segmentation
short rotation coppice
spreading
structure from motion (SfM)
Thematic Mapping
tree age prediction
UAV
UAV photogrammetry
unmanned aerial system (UAS)
unmanned aerial systems
Unmanned Aerial Systems (UAS)
unmanned aerial vehicles
unmanned aerial vehicles (UAV)
Unmanned Aerial Vehicles (UAV)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Forestry Applications of Unmanned Aerial Vehicles
Record Nr. UNINA-9910557112103321
Matese Alessandro  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hyperspectral Remote Sensing of Agriculture and Vegetation
Hyperspectral Remote Sensing of Agriculture and Vegetation
Autore Pascucci Simone
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (266 p.)
Soggetto topico Environmental economics
Research & information: general
Soggetto non controllato abaxial
adaxial
analytical methods
AOTF
artificial intelligence
biodiversity
BRDF
canopy spectra
chlorophyll content
classification
classification of agricultural features
continuous wavelet transform (CWT)
correlation coefficient
crop properties
discrimination
DLARI
Eragrostis tef
Ethiopia
expansive species
feature selection
field spectroscopy
future hyperspectral missions
grapevine
heavy metals
high-resolution spectroscopy for agricultural soils and vegetation
hyperspectral
hyperspectral data as input for modelling soil, crop, and vegetation
hyperspectral databases for agricultural soils and vegetation
hyperspectral imaging
hyperspectral imaging for vegetation
hyperspectral LiDAR
hyperspectral remote sensing
hyperspectral remote sensing for soil and crops in agriculture
invasive species
leaf chlorophyll content
macronutrient
MDATT
micronutrient
MLR
multi-angle observation
Natura 2000
new hyperspectral technologies
object-oriented segmentation
partial least square regression (PLSR)
partial least squares
peanut
plant
plant traits
platforms and sensors
PLS
precision agriculture
product validation
proximal sensing data
proximal sensor
random forest
Red Edge
remote sensing
replicability
reproducibility
soil characteristics
spectra
spectral reflectance
spectroscopy
support vector machine
SVM
vegetation
vegetation classification
vegetation parameters
waveband selection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557691803321
Pascucci Simone  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mobile Mapping Technologies
Mobile Mapping Technologies
Autore Chiang Kai-Wei
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (334 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato 2D laser range-finder
2D laser scanner
3D digitalization
3D point clouds
3D processing
automated database construction
Bayesian inference
binary vocabulary
category matching
constrained nonlinear least-squares problem
convolutional neural network (CNN)
crowdsourcing trajectory
cultural heritage
dynamic environment
encoder
enhanced RANSAC
fingerprinting
geometric features
grammar
handheld
image retrieval
IMMS
indoor localization
indoor mapping
indoor scenes
indoor topological localization
laser scanning
LiDAR
Lidar localization system
LRF
map management
MLS
mobile laser scanning
mobile mapping
motion estimation
multi-group-step L-M optimization
OctoMap
optical sensors
ORB-SLAM2
plant vigor
point cloud
point clouds
portable mobile mapping system
precision agriculture
quadric fitting
rapid relocation
restoration
RGB-D camera
robust statistical analysis
room type tagging
second order hidden Markov model
segmentation-based feature extraction
self-calibration
semantic enrichment
sensor fusion
sensors configurations
SLAM
small-scale vocabulary
smartphone
terrestrial laser scanning
trajectory fusion
tunnel central axis
tunnel cross section
unmanned vehicle
vine size
visual landmark sequence
visual positioning
visual simultaneous localization and mapping
Vitis vinifera
wearable mobile laser system
ISBN 3-03928-019-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367736903321
Chiang Kai-Wei  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optimizing Plant Water Use Efficiency for a Sustainable Environment
Optimizing Plant Water Use Efficiency for a Sustainable Environment
Autore Garcia Tejero Ivan Francisco
Descrizione fisica 1 online resource (366 p.)
Soggetto topico Biology, life sciences
Research & information: general
Technology, engineering, agriculture
Soggetto non controllato abiotic stress
ALES-Arid
almond cultivars
almond quality
antioxidant capacity
apple
benefit-cost ratio
bioactive compounds
biodegradation
cherries
crop coefficient
crop physiological response
crop physiological response to drought scenarios
crop productivity
crop suitability
crop water productivity
crop-production functions
crop-water requirements
deficit irrigation
diseases
diversity
drip irrigation
drought stress
environment
ERP
evapotranspiration
FDR probes and daily fraction of intercepted photosynthetically active radiation
food quality
fruit quality
fruit size
fungi
GIS
greenhouse
growth
harvest index
hydroponics
hydroxycinnamic acids
in vitro culture
internet of things
irrigation
irrigation water productivity
Jerusalem artichoke
landsat
leaf area
leaf area index
leaf greenness index
Linum album Ky. ex Boiss
maize
Manihot esculenta
Manzanilla
marketability
midday stem water potential
mineral fertilization
mineral nutrients
morphological properties
nitrogen
nut yield
olive
osmolytes
oxidative stress
phenology
photosynthesis
photosynthetic rate
pigments
platform
precision agriculture
preformed plastic mulch film
Prunus dulcis
quality
quality markers
regulated deficit irrigation
remote sensing
root components
root growth
root length density
root morphology
root weight density
root-shoot relationships
sap flow
SEBAL
semiarid Mediterranean environment
silicon
smart farming
software
spray-on mulch
stomatal conductance
sustainability
sustained deficit irrigation
tomato
transpiration rate
tuber
Vairo
water
water potential
water productivity
water relation
water saving
water status
water stress
water use efficiency
web application
yield
yield components
Zea mays
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910595078203321
Garcia Tejero Ivan Francisco  
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui