top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Autore Bazi Yakoub
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (438 p.)
Soggetto topico Research & information: general
Soggetto non controllato synthetic aperture radar
despeckling
multi-scale
LSTM
sub-pixel
high-resolution remote sensing imagery
road extraction
machine learning
DenseUNet
scene classification
lifting scheme
convolution
CNN
image classification
deep features
hand-crafted features
Sinkhorn loss
remote sensing
text image matching
triplet networks
EfficientNets
LSTM network
convolutional neural network
water identification
water index
semantic segmentation
high-resolution remote sensing image
pixel-wise classification
result correction
conditional random field (CRF)
satellite
object detection
neural networks
single-shot
deep learning
global convolution network
feature fusion
depthwise atrous convolution
high-resolution representations
ISPRS vaihingen
Landsat-8
faster region-based convolutional neural network (FRCNN)
single-shot multibox detector (SSD)
super-resolution
remote sensing imagery
edge enhancement
satellites
open-set domain adaptation
adversarial learning
min-max entropy
pareto ranking
SAR
Sentinel–1
Open Street Map
U–Net
desert
road
infrastructure
mapping
monitoring
deep convolutional networks
outline extraction
misalignments
nearest feature selector
hyperspectral image classification
two stream residual network
Batch Normalization
plant disease detection
precision agriculture
UAV multispectral images
orthophotos registration
3D information
orthophotos segmentation
wildfire detection
convolutional neural networks
densenet
generative adversarial networks
CycleGAN
data augmentation
pavement markings
visibility
framework
urban forests
OUDN algorithm
object-based
high spatial resolution remote sensing
Generative Adversarial Networks
post-disaster
building damage assessment
anomaly detection
Unmanned Aerial Vehicles (UAV)
xBD
feature engineering
orthophoto
unsupervised segmentation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557747903321
Bazi Yakoub  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Agricultural Irrigation
Agricultural Irrigation
Autore Montazar Aliasghar
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (172 p.)
Soggetto non controllato semi-arid regions
greenhouse gas emission
model simulation
spinach
benchmarking
leaf mineral composition
available water capacity
irrigated crops
organic production
site-specific irrigation
infiltration depth
pumping plants
performance indicator
treated wastewater irrigation
precision agriculture
evaluation of performance
total yield
row cover
irrigation
slope gradient
farming data
optimal irrigation time
lettuce production
life cycle assessment
mulch
monthly changes
irrigation water use efficiency
energy audit
crop evapotranspiration
irrigation management
downy mildew
biomass production
water application rate
tomato fruit yield
temperature variations
irrigation water regimes
salinization
net irrigation requirements
center-pivot irrigation
cover crop
climate change adaptation
deficit irrigation
drip irrigation
Mediterranean region
principal component analysis
global sensitivity analysis
ISBN 3-03921-923-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367740803321
Montazar Aliasghar  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Agricultural Water Conservation: Tools, Strategies, and Practices
Agricultural Water Conservation: Tools, Strategies, and Practices
Pubbl/distr/stampa Basel, Switzerland : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2021
Descrizione fisica 1 electronic resource (242 pages)
Soggetto topico Research
Biology
Technology
Engineering
Agriculture
Soggetto non controllato irrigation
groundwater
alluvial aquifer
water conservation adoption
row crops
Mississippi Delta
precision agriculture
Lower Mississippi River Valley
clogging
drip irrigation
emitter
hydrocyclone
digestate liquid fraction
wastewater
salinity
environments
AquaCrop model
water productivity
scenarios
tolerant
Colorado River Basin
drought
irrigation management strategy
water deficit
optimum water use
forage
BEARS
bushland
climate
evapotranspiration
groundwater management
irrigation water management
Ogallala aquifer region
remote sensing
lysimeter ET assessment
water-use efficiency
analytical formula
efficient design
application efficiency
gravity irrigation
solar MajiPump
water and crop productivity
small-scale irrigation
conservation agriculture
Ethiopia
sensible and latent heat fluxes
surface renewal method
tea plantation
eddy covariance
squash
partial root drying
water use efficiency
soil mulch
growing seasons
gas exchange
fruit quality
Asparagus officinalis L.
cultivars
spears yield
sandy soil
water requirements
IWUE
autonomous landscape irrigation
Hargreaves and Samani evapotranspiration model
water conservation
smart controller
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Agricultural Water Conservation
Record Nr. UNINA-9910557482703321
Basel, Switzerland : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of Remote Image Capture System in Agriculture
Applications of Remote Image Capture System in Agriculture
Autore Molina Martínez José Miguel
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (310 p.)
Soggetto topico History of engineering & technology
Soggetto non controllato SVM
budding rate
UAV
geometric consistency
radiometric consistency
point clouds
ICP
reflectance maps
vegetation indices
Parrot Sequoia
artificial intelligence
precision agriculture
agricultural robot
optimization algorithm
online operation
segmentation
coffee leaf rust
machine learning
deep learning
remote sensing
Fourth Industrial Revolution
Agriculture 4.0
failure strain
sandstone
digital image correlation
Hill-Tsai failure criterion
finite element method
reference evapotranspiration
moisture sensors
machine learning regression
frequency-domain reflectometry
randomizable filtered classifier
convolutional neural network
U-Net
land use
banana plantation
Panama TR4
aerial photography
remote images
systematic mapping study
agriculture
applications
total leaf area
mixed pixels
Cabernet Sauvignon
NDVI
Normalized Difference Vegetation Index
precision viticulture
3D model
spatial vision
fertirrigation
teaching-learning
spectrometry
Sentinel-2
pasture quality index
normalized difference vegetation index
normalized difference water index
supplementation
decision making
digital agriculture
grape yield estimate
berries counting
Dilated CNN
machine learning algorithms
classification performance
winter wheat mapping
large-scale
water stress
Prunus avium L.
stem water potential
low-cost thermography
thermal indexes
canopy temperature
non-water-stressed baselines
non-transpiration baseline
soil moisture
andosols
image processing
greenhouse
automatic tomato harvesting
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557895803321
Molina Martínez José Miguel  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial Neural Networks in Agriculture
Artificial Neural Networks in Agriculture
Autore Kujawa Sebastian
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (283 p.)
Soggetto topico Research & information: general
Biology, life sciences
Technology, engineering, agriculture
Soggetto non controllato artificial neural network (ANN)
Grain weevil identification
neural modelling classification
winter wheat
grain
artificial neural network
ferulic acid
deoxynivalenol
nivalenol
MLP network
sensitivity analysis
precision agriculture
machine learning
similarity
metric
memory
deep learning
plant growth
dynamic response
root zone temperature
dynamic model
NARX neural networks
hydroponics
vegetation indices
UAV
neural network
corn plant density
corn canopy cover
yield prediction
CLQ
GA-BPNN
GPP-driven spectral model
rice phenology
EBK
correlation filter
crop yield prediction
hybrid feature extraction
recursive feature elimination wrapper
artificial neural networks
big data
classification
high-throughput phenotyping
modeling
predicting
time series forecasting
soybean
food production
paddy rice mapping
dynamic time warping
LSTM
weakly supervised learning
cropland mapping
apparent soil electrical conductivity (ECa)
magnetic susceptibility (MS)
EM38
neural networks
Phoenix dactylifera L.
Medjool dates
image classification
convolutional neural networks
transfer learning
average degree of coverage
coverage unevenness coefficient
optimization
high-resolution imagery
oil palm tree
CNN
Faster-RCNN
image identification
agroecology
weeds
yield gap
environment
health
crop models
soil and plant nutrition
automated harvesting
model application for sustainable agriculture
remote sensing for agriculture
decision supporting systems
neural image analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557509803321
Kujawa Sebastian  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Convergence of Intelligent Data Acquisition and Advanced Computing Systems
Convergence of Intelligent Data Acquisition and Advanced Computing Systems
Autore Stamatescu Grigore
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (189 p.)
Soggetto topico Technology: general issues
Energy industries & utilities
Soggetto non controllato automotive
current
electric power train
electric vehicle
embedded systems
delay
detection
distributed systems
measurements
power train
sensor
signals
time delay estimation
unmanned aerial vehicles
wireless sensor networks
intelligent data processing
trajectory planning
relevant data extraction
data consensus
Internet of Things
precision agriculture
system identification
smart building
artificial neural network
energy efficiency
black box modeling
educational robotics
data acquisition
sensors
ROS
STEM
CNN (Convolutional neural networks)
deep learning
pavement defects
residual connection
attention gate
atrous spatial pyramid pooling
intelligent charging
demand response
linear programming
optimization
smart parking
smart grid
ODE Solver
OpenCL
Parareal
parallel/multi-core computing
sensing systems
heterogenous embedded systems
deep sparse auto-encoders
medical diagnosis
linear model
data classification
PSO algorithm
safety-related system
component
FPGA-designing
logical and power-oriented checkability
hidden faults
clock signal
consumed and dissipated power
temperature and current consumption sensors
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557333503321
Stamatescu Grigore  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019
Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019
Autore Matese Alessandro
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (184 p.)
Soggetto topico Research & information: general
Biology, life sciences
Forestry & related industries
Soggetto non controllato unmanned aerial vehicles
seedling detection
forest regeneration
reforestation
establishment survey
machine learning
multispectral classification
UAV photogrammetry
forest modeling
ancient trees measurement
tree age prediction
Mauritia flexuosa
semantic segmentation
end-to-end learning
convolutional neural network
forest inventory
Unmanned Aerial Systems (UAS)
structure from motion (SfM)
Unmanned Aerial Vehicles (UAV)
Photogrammetry
Thematic Mapping
Accuracy Assessment
Reference Data
Forest Sampling
Remote Sensing
Robinia pseudoacacia L.
reproduction
spreading
short rotation coppice
unmanned aerial system (UAS)
object-based image analysis (OBIA)
convolutional neural network (CNN)
juniper woodlands
ecohydrology
remote sensing
unmanned aerial systems
central Oregon
rangelands
seedling stand inventorying
photogrammetric point clouds
hyperspectral imagery
leaf-off
leaf-on
UAV
multispectral image
forest fire
burn severity
classification
precision agriculture
biomass evaluation
image processing
Castanea sativa
unmanned aerial vehicles (UAV)
precision forestry
forestry applications
RGB imagery
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Forestry Applications of Unmanned Aerial Vehicles
Record Nr. UNINA-9910557112103321
Matese Alessandro  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hyperspectral Remote Sensing of Agriculture and Vegetation
Hyperspectral Remote Sensing of Agriculture and Vegetation
Autore Pascucci Simone
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (266 p.)
Soggetto topico Research & information: general
Environmental economics
Soggetto non controllato hyperspectral LiDAR
Red Edge
AOTF
vegetation parameters
leaf chlorophyll content
DLARI
MDATT
adaxial
abaxial
spectral reflectance
peanut
field spectroscopy
hyperspectral
heavy metals
grapevine
PLS
SVM
MLR
multi-angle observation
hyperspectral remote sensing
BRDF
vegetation classification
object-oriented segmentation
spectroscopy
artificial intelligence
proximal sensing data
precision agriculture
spectra
vegetation
plant
classification
discrimination
feature selection
waveband selection
support vector machine
random forest
Natura 2000
invasive species
expansive species
biodiversity
proximal sensor
macronutrient
micronutrient
remote sensing
hyperspectral imaging
platforms and sensors
analytical methods
crop properties
soil characteristics
classification of agricultural features
canopy spectra
chlorophyll content
continuous wavelet transform (CWT)
correlation coefficient
partial least square regression (PLSR)
reproducibility
replicability
partial least squares
Ethiopia
Eragrostis tef
hyperspectral remote sensing for soil and crops in agriculture
hyperspectral imaging for vegetation
plant traits
high-resolution spectroscopy for agricultural soils and vegetation
hyperspectral databases for agricultural soils and vegetation
hyperspectral data as input for modelling soil, crop, and vegetation
product validation
new hyperspectral technologies
future hyperspectral missions
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557691803321
Pascucci Simone  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mobile Mapping Technologies
Mobile Mapping Technologies
Autore Chiang Kai-Wei
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (334 p.)
Soggetto non controllato LRF
smartphone
unmanned vehicle
sensor fusion
2D laser scanner
semantic enrichment
Vitis vinifera
indoor scenes
terrestrial laser scanning
vine size
quadric fitting
multi-group-step L-M optimization
grammar
MLS
indoor topological localization
trajectory fusion
second order hidden Markov model
room type tagging
fingerprinting
restoration
laser scanning
map management
Lidar localization system
point clouds
binary vocabulary
self-calibration
3D processing
cultural heritage
encoder
category matching
indoor mapping
convolutional neural network (CNN)
tunnel cross section
visual positioning
enhanced RANSAC
segmentation-based feature extraction
image retrieval
handheld
crowdsourcing trajectory
visual landmark sequence
indoor localization
mobile mapping
rapid relocation
sensors configurations
precision agriculture
3D digitalization
mobile laser scanning
robust statistical analysis
plant vigor
motion estimation
visual simultaneous localization and mapping
dynamic environment
Bayesian inference
automated database construction
portable mobile mapping system
SLAM
small-scale vocabulary
ORB-SLAM2
LiDAR
IMMS
point cloud
optical sensors
tunnel central axis
constrained nonlinear least-squares problem
3D point clouds
wearable mobile laser system
geometric features
2D laser range-finder
RGB-D camera
OctoMap
ISBN 3-03928-019-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367736903321
Chiang Kai-Wei  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optimizing Plant Water Use Efficiency for a Sustainable Environment
Optimizing Plant Water Use Efficiency for a Sustainable Environment
Autore Garcia Tejero Ivan Francisco
Pubbl/distr/stampa Basel, : MDPI Books, 2022
Descrizione fisica 1 electronic resource (366 p.)
Soggetto topico Research & information: general
Biology, life sciences
Technology, engineering, agriculture
Soggetto non controllato fruit size
Manzanilla
olive
regulated deficit irrigation
water potential
water relation
leaf area
Manihot esculenta
photosynthesis
tuber
water status
antioxidant capacity
bioactive compounds
growth
hydroxycinnamic acids
hydroponics
preformed plastic mulch film
crop water productivity
biodegradation
crop productivity
spray-on mulch
water use efficiency
almond cultivars
crop physiological response
irrigation water productivity
nut yield
drip irrigation
silicon
mineral nutrients
oxidative stress
osmolytes
yield
Zea mays
ERP
GIS
internet of things
precision agriculture
quality
environment
water
software
platform
web application
crop coefficient
drought stress
evapotranspiration
maize
water productivity
Prunus dulcis
Vairo
water stress
sustained deficit irrigation
quality markers
leaf greenness index
root morphology
almond quality
sustainability
marketability
semiarid Mediterranean environment
root components
yield components
fruit quality
deficit irrigation
leaf area index
harvest index
photosynthetic rate
transpiration rate
greenhouse
in vitro culture
apple
cherries
midday stem water potential
sap flow
stomatal conductance
FDR probes and daily fraction of intercepted photosynthetically active radiation
abiotic stress
Linum album Ky. ex Boiss
morphological properties
phenology
pigments
diversity
root length density
root weight density
root-shoot relationships
benefit-cost ratio
nitrogen
root growth
tomato
water saving
Jerusalem artichoke
mineral fertilization
irrigation
diseases
fungi
crop suitability
remote sensing
ALES-Arid
SEBAL
landsat
crop-water requirements
smart farming
crop-production functions
food quality
crop physiological response to drought scenarios
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910595078203321
Garcia Tejero Ivan Francisco  
Basel, : MDPI Books, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui